diff -r 902822492a68 -r fe660c52c48f includes/rijndael.php --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/includes/rijndael.php Wed Jun 13 16:07:17 2007 -0400 @@ -0,0 +1,1052 @@ + + * Ported to PHP by Dan Fuhry + * @package phijndael + * @author Fritz Schneider + * @author Dan Fuhry + * @license BSD-style license + */ + +error_reporting(E_ALL); + +define ('ENC_HEX', 201); +define ('ENC_BASE64', 202); +define ('ENC_BINARY', 203); + +class AESCrypt { + + var $debug = false; + var $mcrypt = false; + + // Rijndael parameters -- Valid values are 128, 192, or 256 + + var $keySizeInBits = 128; + var $blockSizeInBits = 128; + + /////// You shouldn't have to modify anything below this line except for + /////// the function getRandomBytes(). + // + // Note: in the following code the two dimensional arrays are indexed as + // you would probably expect, as array[row][column]. The state arrays + // are 2d arrays of the form state[4][Nb]. + + + // The number of rounds for the cipher, indexed by [Nk][Nb] + var $roundsArray = Array(0,0,0,0,Array(0,0,0,0,10,0, 12,0, 14),0, + Array(0,0,0,0,12,0, 12,0, 14),0, + Array(0,0,0,0,14,0, 14,0, 14) ); + + // The number of bytes to shift by in shiftRow, indexed by [Nb][row] + var $shiftOffsets = Array(0,0,0,0,Array(0,1, 2, 3),0,Array(0,1, 2, 3),0,Array(0,1, 3, 4) ); + + // The round constants used in subkey expansion + var $Rcon = Array( + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, + 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, + 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, + 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, + 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ); + + // Precomputed lookup table for the SBox + var $SBox = Array( + 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, + 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, + 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, + 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, + 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, + 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, + 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, + 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, + 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, + 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, + 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, + 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, + 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, + 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, + 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, + 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, + 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, + 22 ); + + // Precomputed lookup table for the inverse SBox + var $SBoxInverse = Array( + 82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, + 251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, + 233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, + 250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, + 109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, + 204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21, + 70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247, + 228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2, + 193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220, + 234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173, + 53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29, + 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75, + 198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168, + 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81, + 127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160, + 224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97, + 23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, + 125 ); + + function AESCrypt($ks = 128, $bs = 128, $debug = false) + { + $this->__construct($ks, $bs, $debug); + } + + function __construct($ks = 128, $bs = 128, $debug = false) + { + $this->keySizeInBits = $ks; + $this->blockSizeInBits = $bs; + + // Use the Mcrypt library? This speeds things up dramatically. + if(defined('MCRYPT_RIJNDAEL_' . $ks) && defined('MCRYPT_ACCEL')) + { + eval('$mcb = MCRYPT_RIJNDAEL_' . $ks.';'); + $bks = mcrypt_module_get_algo_block_size($mcb); + $bks = $bks * 8; + if ( $bks != $bs ) + { + $mcb = false; + echo (string)$bks; + } + } + else + { + $mcb = false; + } + + $this->mcrypt = $mcb; + + // Cipher parameters ... do not change these + $this->Nk = $this->keySizeInBits / 32; + $this->Nb = $this->blockSizeInBits / 32; + $this->Nr = $this->roundsArray[$this->Nk][$this->Nb]; + $this->debug = $debug; + } + + // Error handler + + function trigger_error($text, $level = E_USER_NOTICE) + { + $bt = debug_backtrace(); + $lastfunc =& $bt[1]; + switch($level) + { + case E_USER_NOTICE: + default: + $desc = 'Notice'; + break; + case E_USER_WARNING: + $desc = 'Warning'; + break; + case E_USER_ERROR: + $desc = 'Fatal'; + break; + } + ob_start(); + if($this->debug || $level == E_USER_ERROR) echo "AES encryption: {$desc}: $text in {$lastfunc['file']} on line {$lastfunc['line']} in function {$lastfunc['function']}
"; + if($this->debug) + { + //echo '
'.enano_debug_print_backtrace(true).'
'; + } + ob_end_flush(); + if($level == E_USER_ERROR) + { + echo '

This can sometimes happen if you are upgrading Enano to a new version and did not log out first. Click here to force cookies to clear and try again. You will be logged out.

'; + exit; + } + } + + function array_slice_js_compat($array, $start, $finish = 0) + { + $len = $finish - $start; + if($len < 0) $len = 0 - $len; + //if($this->debug) echo (string)$len . ' '; + //if(count($array) < $start + $len) + // $this->trigger_error('Index out of range', E_USER_WARNING); + return array_slice($array, $start, $len); + } + + function concat($s1, $s2) + { + if(is_array($s1) && is_array($s2)) + return array_merge($s1, $s2); + elseif( ( is_array($s1) && !is_array($s2) ) || ( !is_array($s1) && is_array($s2) ) ) + { + $this->trigger_error('incompatible types - you can\'t combine a non-array with an array', E_USER_WARNING); + return false; + } + else + return $s1 . $s2; + } + + // This method circularly shifts the array left by the number of elements + // given in its parameter. It returns the resulting array and is used for + // the ShiftRow step. Note that shift() and push() could be used for a more + // elegant solution, but they require IE5.5+, so I chose to do it manually. + + function cyclicShiftLeft($theArray, $positions) { + if(!is_int($positions)) + { + $this->trigger_error('$positions is not an integer! Backtrace:
'.print_r(debug_backtrace(), true).'
', E_USER_WARNING); + return false; + } + $second = array_slice($theArray, 0, $positions); + $first = array_slice($theArray, $positions); + $theArray = array_merge($first, $second); + return $theArray; + } + + // Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec. + + function xtime($poly) { + $poly <<= 1; + return (($poly & 0x100) ? ($poly ^ 0x11B) : ($poly)); + } + + // Multiplies the two elements of GF(2^8) together and returns the result. + // See the Rijndael spec, but should be straightforward: for each power of + // the indeterminant that has a 1 coefficient in x, add y times that power + // to the result. x and y should be bytes representing elements of GF(2^8) + + function mult_GF256($x, $y) { + $result = 0; + + for ($bit = 1; $bit < 256; $bit *= 2, $y = $this->xtime($y)) { + if ($x & $bit) + $result ^= $y; + } + return $result; + } + + // Performs the substitution step of the cipher. State is the 2d array of + // state information (see spec) and direction is string indicating whether + // we are performing the forward substitution ("encrypt") or inverse + // substitution (anything else) + + function byteSub(&$state, $direction) { + //global $this->SBox, $this->SBoxInverse, $this->Nb; + if ($direction == "encrypt") // Point S to the SBox we're using + $S =& $this->SBox; + else + $S =& $this->SBoxInverse; + for ($i = 0; $i < 4; $i++) // Substitute for every byte in state + for ($j = 0; $j < $this->Nb; $j++) + $state[$i][$j] = $S[$state[$i][$j]]; + } + + // Performs the row shifting step of the cipher. + + function shiftRow(&$state, $direction) { + //global $this->Nb, $this->shiftOffsets; + for ($i=1; $i<4; $i++) // Row 0 never shifts + if ($direction == "encrypt") + $state[$i] = $this->cyclicShiftLeft($state[$i], $this->shiftOffsets[$this->Nb][$i]); + else + $state[$i] = $this->cyclicShiftLeft($state[$i], $this->Nb - $this->shiftOffsets[$this->Nb][$i]); + + } + + // Performs the column mixing step of the cipher. Most of these steps can + // be combined into table lookups on 32bit values (at least for encryption) + // to greatly increase the speed. + + function mixColumn(&$state, $direction) { + //global $this->Nb; + $b = Array(); // Result of matrix multiplications + for ($j = 0; $j < $this->Nb; $j++) { // Go through each column... + for ($i = 0; $i < 4; $i++) { // and for each row in the column... + if ($direction == "encrypt") + $b[$i] = $this->mult_GF256($state[$i][$j], 2) ^ // perform mixing + $this->mult_GF256($state[($i+1)%4][$j], 3) ^ + $state[($i+2)%4][$j] ^ + $state[($i+3)%4][$j]; + else + $b[$i] = $this->mult_GF256($state[$i][$j], 0xE) ^ + $this->mult_GF256($state[($i+1)%4][$j], 0xB) ^ + $this->mult_GF256($state[($i+2)%4][$j], 0xD) ^ + $this->mult_GF256($state[($i+3)%4][$j], 9); + } + for ($i = 0; $i < 4; $i++) // Place result back into column + $state[$i][$j] = $b[$i]; + } + } + + // Adds the current round key to the state information. Straightforward. + + function addRoundKey(&$state, $roundKey) { + //global $this->Nb; + for ($j = 0; $j < $this->Nb; $j++) { // Step through columns... + $state[0][$j] ^= ( $roundKey[$j] & 0xFF); // and XOR + $state[1][$j] ^= (($roundKey[$j]>>8) & 0xFF); + $state[2][$j] ^= (($roundKey[$j]>>16) & 0xFF); + $state[3][$j] ^= (($roundKey[$j]>>24) & 0xFF); + } + } + + // This function creates the expanded key from the input (128/192/256-bit) + // key. The parameter key is an array of bytes holding the value of the key. + // The returned value is an array whose elements are the 32-bit words that + // make up the expanded key. + + function keyExpansion($key) { + //global $this->keySizeInBits, $this->blockSizeInBits, $this->roundsArray, $this->Nk, $this->Nb, $this->Nr, $this->Nk, $this->SBox, $this->Rcon; + $expandedKey = Array(); + + // in case the key size or parameters were changed... + $this->Nk = $this->keySizeInBits / 32; + $this->Nb = $this->blockSizeInBits / 32; + $this->Nr = $this->roundsArray[$this->Nk][$this->Nb]; + + for ($j=0; $j < $this->Nk; $j++) // Fill in input key first + $expandedKey[$j] = + ($key[4*$j]) | ($key[4*$j+1]<<8) | ($key[4*$j+2]<<16) | ($key[4*$j+3]<<24); + + // Now walk down the rest of the array filling in expanded key bytes as + // per Rijndael's spec + for ($j = $this->Nk; $j < $this->Nb * ($this->Nr + 1); $j++) { // For each word of expanded key + $temp = $expandedKey[$j - 1]; + if ($j % $this->Nk == 0) + $temp = ( ($this->SBox[($temp>>8) & 0xFF]) | + ($this->SBox[($temp>>16) & 0xFF]<<8) | + ($this->SBox[($temp>>24) & 0xFF]<<16) | + ($this->SBox[$temp & 0xFF]<<24) ) ^ $this->Rcon[floor($j / $this->Nk) - 1]; + elseif ($this->Nk > 6 && $j % $this->Nk == 4) + $temp = ($this->SBox[($temp>>24) & 0xFF]<<24) | + ($this->SBox[($temp>>16) & 0xFF]<<16) | + ($this->SBox[($temp>>8) & 0xFF]<<8) | + ($this->SBox[ $temp & 0xFF]); + $expandedKey[$j] = $expandedKey[$j-$this->Nk] ^ $temp; + } + return $expandedKey; + } + + // Rijndael's round functions... + + function RijndaelRound(&$state, $roundKey) { + $this->byteSub($state, "encrypt"); + $this->shiftRow($state, "encrypt"); + $this->mixColumn($state, "encrypt"); + $this->addRoundKey($state, $roundKey); + } + + function InverseRijndaelRound(&$state, $roundKey) { + $this->addRoundKey($state, $roundKey); + $this->mixColumn($state, "decrypt"); + $this->shiftRow($state, "decrypt"); + $this->byteSub($state, "decrypt"); + } + + function FinalRijndaelRound(&$state, $roundKey) { + $this->byteSub($state, "encrypt"); + $this->shiftRow($state, "encrypt"); + $this->addRoundKey($state, $roundKey); + } + + function InverseFinalRijndaelRound(&$state, $roundKey){ + $this->addRoundKey($state, $roundKey); + $this->shiftRow($state, "decrypt"); + $this->byteSub($state, "decrypt"); + } + + // encrypt is the basic encryption function. It takes parameters + // block, an array of bytes representing a plaintext block, and expandedKey, + // an array of words representing the expanded key previously returned by + // keyExpansion(). The ciphertext block is returned as an array of bytes. + + function cryptBlock($block, $expandedKey) { + //global $this->blockSizeInBits, $this->Nb, $this->Nr; + $t=count($block)*8; + if (!is_array($block) || count($block)*8 != $this->blockSizeInBits) + { + $this->trigger_error('block is bad or block size is wrong
'.print_r($block, true).'

Aiming for size '.$this->blockSizeInBits.', got '.$t.'.', E_USER_WARNING); + return false; + } + if (!$expandedKey) + return; + + $block = $this->packBytes($block); + $this->addRoundKey($block, $expandedKey); + for ($i=1; $i<$this->Nr; $i++) + $this->RijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$i, $this->Nb*($i+1))); + $this->FinalRijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$this->Nr)); + $ret = $this->unpackBytes($block); + return $ret; + } + + // decrypt is the basic decryption function. It takes parameters + // block, an array of bytes representing a ciphertext block, and expandedKey, + // an array of words representing the expanded key previously returned by + // keyExpansion(). The decrypted block is returned as an array of bytes. + + function unCryptBlock($block, $expandedKey) { + $t = count($block)*8; + if (!is_array($block) || count($block)*8 != $this->blockSizeInBits) + { + $this->trigger_error('$block is not a valid rijndael-block array: '.$this->byteArrayToHex($block).'

'.print_r($block, true).'

Block size is '.$t.', should be '.$this->blockSizeInBits.'

', E_USER_WARNING); + return false; + } + if (!$expandedKey) + { + $this->trigger_error('$expandedKey is invalid', E_USER_WARNING); + return false; + } + + $block = $this->packBytes($block); + $this->InverseFinalRijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$this->Nr)); + for ($i = $this->Nr - 1; $i>0; $i--) + { + $this->InverseRijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$i, $this->Nb*($i+1))); + } + $this->addRoundKey($block, $expandedKey); + $ret = $this->unpackBytes($block); + if(!is_array($ret)) + { + $this->trigger_error('$ret is not an array', E_USER_WARNING); + } + return $ret; + } + + // This method takes a byte array (byteArray) and converts it to a string by + // applying String.fromCharCode() to each value and concatenating the result. + // The resulting string is returned. Note that this function SKIPS zero bytes + // under the assumption that they are padding added in formatPlaintext(). + // Obviously, do not invoke this method on raw data that can contain zero + // bytes. It is really only appropriate for printable ASCII/Latin-1 + // values. Roll your own function for more robust functionality :) + + function byteArrayToString($byteArray) { + $result = ""; + for($i=0; $i "10ff". The function returns a + // string. + + /* + function byteArrayToHex($byteArray) { + $result = ""; + if (!$byteArray) + return; + for ($i=0; $i [16, 255]. This + // function returns an array. + + /* + function hexToByteArray($hexString) { + $byteArray = Array(); + if (strlen($hexString) % 2) // must have even length + return; + if (strstr($hexString, "0x") == $hexString || strstr($hexString, "0X") == $hexString) + $hexString = substr($hexString, 2); + for ($i = 0; $ienano_str_split($str, 2); + foreach($str as $s) + { + $arr[] = intval(hexdec($s)); + } + return $arr; + } + + // This function packs an array of bytes into the four row form defined by + // Rijndael. It assumes the length of the array of bytes is divisible by + // four. Bytes are filled in according to the Rijndael spec (starting with + // column 0, row 0 to 3). This function returns a 2d array. + + function packBytes($octets) { + $state = Array(); + if (!$octets || count($octets) % 4) + return; + + $state[0] = Array(); $state[1] = Array(); + $state[2] = Array(); $state[3] = Array(); + for ($j=0; $jblockSizeInBits; + $bpb = $this->blockSizeInBits / 8; // bytes per block + + // if primitive string or String instance + if (is_string($plaintext)) { + $plaintext = $this->enano_str_split($plaintext); + // Unicode issues here (ignoring high byte) + for ($i=0; $icharCodeAt($plaintext[$i], 0) & 0xFF; + } + + for ($i = $bpb - (sizeof($plaintext) % $bpb); $i > 0 && $i < $bpb; $i--) + $plaintext[] = 0; + + return $plaintext; + } + + // Returns an array containing "howMany" random bytes. YOU SHOULD CHANGE THIS + // TO RETURN HIGHER QUALITY RANDOM BYTES IF YOU ARE USING THIS FOR A "REAL" + // APPLICATION. (edit: done, mt_rand() is relatively secure) + + function getRandomBytes($howMany) { + $bytes = Array(); + for ($i=0; $i<$howMany; $i++) + $bytes[$i] = mt_rand(0, 255); + return $bytes; + } + + // rijndaelEncrypt(plaintext, key, mode) + // Encrypts the plaintext using the given key and in the given mode. + // The parameter "plaintext" can either be a string or an array of bytes. + // The parameter "key" must be an array of key bytes. If you have a hex + // string representing the key, invoke hexToByteArray() on it to convert it + // to an array of bytes. The third parameter "mode" is a string indicating + // the encryption mode to use, either "ECB" or "CBC". If the parameter is + // omitted, ECB is assumed. + // + // An array of bytes representing the cihpertext is returned. To convert + // this array to hex, invoke byteArrayToHex() on it. If you are using this + // "for real" it is a good idea to change the function getRandomBytes() to + // something that returns truly random bits. + + function rijndaelEncrypt($plaintext, $key, $mode = 'ECB') { + //global $this->blockSizeInBits, $this->keySizeInBits; + $bpb = $this->blockSizeInBits / 8; // bytes per block + // var ct; // ciphertext + + if($mode == 'CBC') + { + if (!is_string($plaintext) || !is_array($key)) + { + $this->trigger_error('In CBC mode the first and second parameters should be strings', E_USER_WARNING); + return false; + } + } else { + if (!is_array($plaintext) || !is_array($key)) + { + $this->trigger_error('In ECB mode the first and second parameters should be byte arrays', E_USER_WARNING); + return false; + } + } + if (sizeof($key)*8 != $this->keySizeInBits) + { + $this->trigger_error('The key needs to be '. ( $this->keySizeInBits / 8 ) .' bytes in length', E_USER_WARNING); + return false; + } + if ($mode == "CBC") + $ct = $this->getRandomBytes($bpb); // get IV + else { + $mode = "ECB"; + $ct = Array(); + } + + // convert plaintext to byte array and pad with zeros if necessary. + $plaintext = $this->formatPlaintext($plaintext); + + $expandedKey = $this->keyExpansion($key); + + for ($block=0; $blockarray_slice_js_compat($plaintext, $block*$bpb, ($block+1)*$bpb); + if ($mode == "CBC") + { + for ($i=0; $i<$bpb; $i++) + { + $aBlock[$i] ^= $ct[$block*$bpb + $i]; + } + } + $cp = $this->cryptBlock($aBlock, $expandedKey); + $ct = $this->concat($ct, $cp); + } + + return $ct; + } + + // rijndaelDecrypt(ciphertext, key, mode) + // Decrypts the using the given key and mode. The parameter "ciphertext" + // must be an array of bytes. The parameter "key" must be an array of key + // bytes. If you have a hex string representing the ciphertext or key, + // invoke hexToByteArray() on it to convert it to an array of bytes. The + // parameter "mode" is a string, either "CBC" or "ECB". + // + // An array of bytes representing the plaintext is returned. To convert + // this array to a hex string, invoke byteArrayToHex() on it. To convert it + // to a string of characters, you can use byteArrayToString(). + + function rijndaelDecrypt($ciphertext, $key, $mode = 'ECB') { + //global $this->blockSizeInBits, $this->keySizeInBits; + $bpb = $this->blockSizeInBits / 8; // bytes per block + $pt = Array(); // plaintext array + // $aBlock; // a decrypted block + // $block; // current block number + + if (!$ciphertext) + { + $this->trigger_error('$ciphertext should be a byte array', E_USER_WARNING); + return false; + } + if( !is_array($key) ) + { + $this->trigger_error('$key should be a byte array', E_USER_WARNING); + return false; + } + if( is_string($ciphertext) ) + { + $this->trigger_error('$ciphertext should be a byte array', E_USER_WARNING); + return false; + } + if (sizeof($key)*8 != $this->keySizeInBits) + { + $this->trigger_error('Encryption key is the wrong length', E_USER_WARNING); + return false; + } + if (!$mode) + $mode = "ECB"; // assume ECB if mode omitted + + $expandedKey = $this->keyExpansion($key); + + // work backwards to accomodate CBC mode + for ($block=(sizeof($ciphertext) / $bpb)-1; $block>0; $block--) + { + if( ( $block*$bpb ) + ( ($block+1)*$bpb ) > count($ciphertext) ) + { + //$this->trigger_error('$ciphertext index out of bounds', E_USER_ERROR); + } + $current_block = $this->array_slice_js_compat($ciphertext, $block*$bpb, ($block+1)*$bpb); + if(count($current_block) * 8 != $this->blockSizeInBits) + { + // $c=count($current_block)*8; + // $this->trigger_error('We got a '.$c.'-bit block, instead of '.$this->blockSizeInBits.'', E_USER_ERROR); + } + $aBlock = $this->uncryptBlock($current_block, $expandedKey); + if(!$aBlock) + { + $this->trigger_error('Shared block decryption routine returned false', E_USER_WARNING); + return false; + } + if ($mode == "CBC") + for ($i=0; $i<$bpb; $i++) + $pt[($block-1)*$bpb + $i] = $aBlock[$i] ^ $ciphertext[($block-1)*$bpb + $i]; + else + $pt = $this->concat($aBlock, $pt); + } + + // do last block if ECB (skips the IV in CBC) + if ($mode == "ECB") + { + $x = $this->uncryptBlock($this->array_slice_js_compat($ciphertext, 0, $bpb), $expandedKey); + if(!$x) + { + $this->trigger_error('ECB block decryption routine returned false', E_USER_WARNING); + return false; + } + $pt = $this->concat($x, $pt); + if(!$pt) + { + $this->trigger_error('ECB concatenation routine returned false', E_USER_WARNING); + return false; + } + } + + return $pt; + } + + /** + * Wrapper for encryption. + * @param string $text the text to encrypt + * @param string $key the raw binary key to encrypt with + * @param int $return_encoding optional - can be ENC_BINARY, ENC_HEX or ENC_BASE64 + */ + + function encrypt($text, $key, $return_encoding = ENC_HEX) + { + if ( $this->mcrypt && $this->blockSizeInBits == mcrypt_module_get_algo_block_size(eval('return MCRYPT_RIJNDAEL_'.$this->keySizeInBits.';')) ) + { + $iv_size = mcrypt_get_iv_size($this->mcrypt, MCRYPT_MODE_ECB); + $iv = mcrypt_create_iv($iv_size, MCRYPT_RAND); + $cryptext = mcrypt_encrypt($this->mcrypt, $key, $text, MCRYPT_MODE_ECB, $iv); + switch($return_encoding) + { + case ENC_HEX: + default: + $cryptext = $this->strtohex($cryptext); + break; + case ENC_BINARY: + $cryptext = $cryptext; + break; + case ENC_BASE64: + $cryptext = base64_encode($cryptext); + break; + } + } + else + { + $key = $this->prepare_string($key); + $text = $this->prepare_string($text); + $cryptext = $this->rijndaelEncrypt($text, $key, 'ECB'); + if(!is_array($cryptext)) + { + echo 'Warning: encryption failed for string: '.$text.'
'; + return false; + } + switch($return_encoding) + { + case ENC_HEX: + default: + $cryptext = $this->byteArrayToHex($cryptext); + break; + case ENC_BINARY: + $cryptext = $this->byteArrayToString($cryptext); + break; + case ENC_BASE64: + $cryptext = base64_encode($this->byteArrayToString($cryptext)); + break; + } + } + return $cryptext; + } + + /** + * Wrapper for decryption. + * @param string $text the encrypted text + * @param string $key the raw binary key used to encrypt the text + * @param int $input_encoding the encoding used for the encrypted string. Can be ENC_BINARY, ENC_HEX, or ENC_BASE64. + * @return string + */ + + function decrypt($text, $key, $input_encoding = ENC_HEX) + { + switch($input_encoding) + { + case ENC_BINARY: + default: + break; + case ENC_HEX: + $text = $this->hextostring($text); + break; + case ENC_BASE64: + $text = base64_decode($text); + break; + } + //$mod = strlen($text) % $this->blockSizeInBits; + //if($mod != 96) + //die('modulus check failed: '.$mod); + if ( $this->mcrypt ) + { + $iv_size = mcrypt_get_iv_size($this->mcrypt, MCRYPT_MODE_ECB); + $iv = mcrypt_create_iv($iv_size, MCRYPT_RAND); + $dypt = mcrypt_decrypt($this->mcrypt, $key, $text, MCRYPT_MODE_ECB, $iv); + } + else + { + $etext = $this->prepare_string($text); + $ekey = $this->prepare_string($key); + $mod = count($etext) % $this->blockSizeInBits; + $dypt = $this->rijndaelDecrypt($etext, $ekey, 'ECB'); + if(!$dypt) + { + echo '
'.print_r($dypt, true).'
'; + $this->trigger_error('Rijndael main decryption routine failed', E_USER_ERROR); + } + $dypt = $this->byteArrayToString($dypt); + } + return $dypt; + } + + /** + * Enano-ese equivalent of str_split() which is only found in PHP5 + * @param $text string the text to split + * @param $inc int size of each block + * @return array + */ + + function enano_str_split($text, $inc = 1) + { + if($inc < 1) return false; + if($inc >= strlen($text)) return Array($text); + $len = ceil(strlen($text) / $inc); + $ret = Array(); + for($i=0;$itrigger_error('First parameter should be an array', E_USER_WARNING); + return false; + } + $ret = ''; + foreach($arr as $a) + { + if($a != 0) $ret .= chr($a); + } + return $ret; + } + */ + + function strtohex($str) + { + $str = $this->enano_str_split($str); + $ret = ''; + foreach($str as $s) + { + $chr = dechex(ord($s)); + if(strlen($chr) < 2) $chr = '0' . $chr; + $ret .= $chr; + } + return $ret; + } + + function gen_readymade_key() + { + $key = $this->strtohex($this->randkey($this->keySizeInBits / 8)); + return $key; + } + + function prepare_string($text) + { + $ret = $this->hexToByteArray($this->strtohex($text)); + if(count($ret) != strlen($text)) + die('problem seems to be the hex conversion'); + return $ret; + } + + /** + * Decodes a hex string. + * @param string $hex The hex code to decode + * @return string + */ + + function hextostring($hex) + { + $hex = $this->enano_str_split($hex, 2); + $bin_key = ''; + foreach($hex as $nibble) + { + $byte = chr(hexdec($nibble)); + $bin_key .= $byte; + } + return $bin_key; + } +} + +/** + * XXTEA encryption arithmetic library. + * + * Copyright (C) 2006 Ma Bingyao + * Version: 1.5 + * LastModified: Dec 5, 2006 + * This library is free. You can redistribute it and/or modify it. + * + * From dandaman32: I am treating this code as GPL, as implied by the license statement above. + */ +class TEACrypt extends AESCrypt { + function long2str($v, $w) { + $len = count($v); + $n = ($len - 1) << 2; + if ($w) { + $m = $v[$len - 1]; + if (($m < $n - 3) || ($m > $n)) return false; + $n = $m; + } + $s = array(); + for ($i = 0; $i < $len; $i++) { + $s[$i] = pack("V", $v[$i]); + } + if ($w) { + return substr(join('', $s), 0, $n); + } + else { + return join('', $s); + } + } + + function str2long($s, $w) { + $v = unpack("V*", $s. str_repeat("\0", (4 - strlen($s) % 4) & 3)); + $v = array_values($v); + if ($w) { + $v[count($v)] = strlen($s); + } + return $v; + } + + function int32($n) { + while ($n >= 2147483648) $n -= 4294967296; + while ($n <= -2147483649) $n += 4294967296; + return (int)$n; + } + + function encrypt($str, $key) { + if ($str == "") { + return ""; + } + $v = $this->str2long($str, true); + $k = $this->str2long($key, false); + if (count($k) < 4) { + for ($i = count($k); $i < 4; $i++) { + $k[$i] = 0; + } + } + $n = count($v) - 1; + + $z = $v[$n]; + $y = $v[0]; + $delta = 0x9E3779B9; + $q = floor(6 + 52 / ($n + 1)); + $sum = 0; + while (0 < $q--) { + $sum = $this->int32($sum + $delta); + $e = $sum >> 2 & 3; + for ($p = 0; $p < $n; $p++) { + $y = $v[$p + 1]; + $mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z)); + $z = $v[$p] = $this->int32($v[$p] + $mx); + } + $y = $v[0]; + $mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z)); + $z = $v[$n] = $this->int32($v[$n] + $mx); + } + return $this->long2str($v, false); + } + + function decrypt($str, $key) { + if ($str == "") { + return ""; + } + $v = $this->str2long($str, false); + $k = $this->str2long($key, false); + if (count($k) < 4) { + for ($i = count($k); $i < 4; $i++) { + $k[$i] = 0; + } + } + $n = count($v) - 1; + + $z = $v[$n]; + $y = $v[0]; + $delta = 0x9E3779B9; + $q = floor(6 + 52 / ($n + 1)); + $sum = $this->int32($q * $delta); + while ($sum != 0) { + $e = $sum >> 2 & 3; + for ($p = $n; $p > 0; $p--) { + $z = $v[$p - 1]; + $mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z)); + $y = $v[$p] = $this->int32($v[$p] - $mx); + } + $z = $v[$n]; + $mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z)); + $y = $v[0] = $this->int32($v[0] - $mx); + $sum = $this->int32($sum - $delta); + } + return $this->long2str($v, true); + } +} + +?>