1
|
1 |
/* rijndael.js Rijndael Reference Implementation
|
|
2 |
Copyright (c) 2001 Fritz Schneider
|
|
3 |
|
|
4 |
This software is provided as-is, without express or implied warranty.
|
|
5 |
Permission to use, copy, modify, distribute or sell this software, with or
|
|
6 |
without fee, for any purpose and by any individual or organization, is hereby
|
|
7 |
granted, provided that the above copyright notice and this paragraph appear
|
|
8 |
in all copies. Distribution as a part of an application or binary must
|
|
9 |
include the above copyright notice in the documentation and/or other materials
|
|
10 |
provided with the application or distribution.
|
|
11 |
|
|
12 |
|
|
13 |
As the above disclaimer notes, you are free to use this code however you
|
|
14 |
want. However, I would request that you send me an email
|
|
15 |
(fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful
|
|
16 |
or instructional. Seeing that people are using the code acts as
|
|
17 |
encouragement for me to continue development. If you *really* want to thank
|
|
18 |
me you can buy the book I wrote with Thomas Powell, _JavaScript:
|
|
19 |
_The_Complete_Reference_ :)
|
|
20 |
|
|
21 |
This code is an UNOPTIMIZED REFERENCE implementation of Rijndael.
|
|
22 |
If there is sufficient interest I can write an optimized (word-based,
|
|
23 |
table-driven) version, although you might want to consider using a
|
|
24 |
compiled language if speed is critical to your application. As it stands,
|
|
25 |
one run of the monte carlo test (10,000 encryptions) can take up to
|
|
26 |
several minutes, depending upon your processor. You shouldn't expect more
|
|
27 |
than a few kilobytes per second in throughput.
|
|
28 |
|
|
29 |
Also note that there is very little error checking in these functions.
|
|
30 |
Doing proper error checking is always a good idea, but the ideal
|
|
31 |
implementation (using the instanceof operator and exceptions) requires
|
|
32 |
IE5+/NS6+, and I've chosen to implement this code so that it is compatible
|
|
33 |
with IE4/NS4.
|
|
34 |
|
|
35 |
And finally, because JavaScript doesn't have an explicit byte/char data
|
|
36 |
type (although JavaScript 2.0 most likely will), when I refer to "byte"
|
|
37 |
in this code I generally mean "32 bit integer with value in the interval
|
|
38 |
[0,255]" which I treat as a byte.
|
|
39 |
|
|
40 |
See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation
|
|
41 |
of the (very simple) API provided by this code.
|
|
42 |
|
|
43 |
Fritz Schneider
|
|
44 |
fritz at cs.ucsd.edu
|
|
45 |
|
|
46 |
*/
|
|
47 |
|
|
48 |
// Rijndael parameters -- Valid values are 128, 192, or 256
|
|
49 |
|
|
50 |
var keySizeInBits = ( typeof AES_BITS == 'number' ) ? AES_BITS : 128;
|
|
51 |
var blockSizeInBits = ( typeof AES_BLOCKSIZE == 'number' ) ? AES_BLOCKSIZE : 128;
|
|
52 |
|
|
53 |
/////// You shouldn't have to modify anything below this line except for
|
|
54 |
/////// the function getRandomBytes().
|
|
55 |
//
|
|
56 |
// Note: in the following code the two dimensional arrays are indexed as
|
|
57 |
// you would probably expect, as array[row][column]. The state arrays
|
|
58 |
// are 2d arrays of the form state[4][Nb].
|
|
59 |
|
|
60 |
|
|
61 |
// The number of rounds for the cipher, indexed by [Nk][Nb]
|
|
62 |
var roundsArray = [ ,,,,[,,,,10,, 12,, 14],,
|
|
63 |
[,,,,12,, 12,, 14],,
|
|
64 |
[,,,,14,, 14,, 14] ];
|
|
65 |
|
|
66 |
// The number of bytes to shift by in shiftRow, indexed by [Nb][row]
|
|
67 |
var shiftOffsets = [ ,,,,[,1, 2, 3],,[,1, 2, 3],,[,1, 3, 4] ];
|
|
68 |
|
|
69 |
// The round constants used in subkey expansion
|
|
70 |
var Rcon = [
|
|
71 |
0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
|
|
72 |
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
|
|
73 |
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
|
|
74 |
0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4,
|
|
75 |
0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ];
|
|
76 |
|
|
77 |
// Precomputed lookup table for the SBox
|
|
78 |
var SBox = [
|
|
79 |
99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171,
|
|
80 |
118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164,
|
|
81 |
114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113,
|
|
82 |
216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226,
|
|
83 |
235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214,
|
|
84 |
179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203,
|
|
85 |
190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69,
|
|
86 |
249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245,
|
|
87 |
188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68,
|
|
88 |
23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42,
|
|
89 |
144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73,
|
|
90 |
6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109,
|
|
91 |
141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37,
|
|
92 |
46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62,
|
|
93 |
181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225,
|
|
94 |
248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
|
|
95 |
140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187,
|
|
96 |
22 ];
|
|
97 |
|
|
98 |
// Precomputed lookup table for the inverse SBox
|
|
99 |
var SBoxInverse = [
|
|
100 |
82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215,
|
|
101 |
251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222,
|
|
102 |
233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66,
|
|
103 |
250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73,
|
|
104 |
109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92,
|
|
105 |
204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21,
|
|
106 |
70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247,
|
|
107 |
228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2,
|
|
108 |
193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220,
|
|
109 |
234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173,
|
|
110 |
53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29,
|
|
111 |
41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75,
|
|
112 |
198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168,
|
|
113 |
51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81,
|
|
114 |
127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160,
|
|
115 |
224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97,
|
|
116 |
23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12,
|
|
117 |
125 ];
|
|
118 |
|
|
119 |
function str_split(string, chunklen)
|
|
120 |
{
|
|
121 |
if(!chunklen) chunklen = 1;
|
|
122 |
ret = new Array();
|
|
123 |
for ( i = 0; i < string.length; i+=chunklen )
|
|
124 |
{
|
|
125 |
ret[ret.length] = string.slice(i, i+chunklen);
|
|
126 |
}
|
|
127 |
return ret;
|
|
128 |
}
|
|
129 |
|
|
130 |
// This method circularly shifts the array left by the number of elements
|
|
131 |
// given in its parameter. It returns the resulting array and is used for
|
|
132 |
// the ShiftRow step. Note that shift() and push() could be used for a more
|
|
133 |
// elegant solution, but they require IE5.5+, so I chose to do it manually.
|
|
134 |
|
|
135 |
function cyclicShiftLeft(theArray, positions) {
|
|
136 |
var temp = theArray.slice(0, positions);
|
|
137 |
theArray = theArray.slice(positions).concat(temp);
|
|
138 |
return theArray;
|
|
139 |
}
|
|
140 |
|
|
141 |
// Cipher parameters ... do not change these
|
|
142 |
var Nk = keySizeInBits / 32;
|
|
143 |
var Nb = blockSizeInBits / 32;
|
|
144 |
var Nr = roundsArray[Nk][Nb];
|
|
145 |
|
|
146 |
// Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec.
|
|
147 |
|
|
148 |
function xtime(poly) {
|
|
149 |
poly <<= 1;
|
|
150 |
return ((poly & 0x100) ? (poly ^ 0x11B) : (poly));
|
|
151 |
}
|
|
152 |
|
|
153 |
// Multiplies the two elements of GF(2^8) together and returns the result.
|
|
154 |
// See the Rijndael spec, but should be straightforward: for each power of
|
|
155 |
// the indeterminant that has a 1 coefficient in x, add y times that power
|
|
156 |
// to the result. x and y should be bytes representing elements of GF(2^8)
|
|
157 |
|
|
158 |
function mult_GF256(x, y) {
|
|
159 |
var bit, result = 0;
|
|
160 |
|
|
161 |
for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) {
|
|
162 |
if (x & bit)
|
|
163 |
result ^= y;
|
|
164 |
}
|
|
165 |
return result;
|
|
166 |
}
|
|
167 |
|
|
168 |
// Performs the substitution step of the cipher. State is the 2d array of
|
|
169 |
// state information (see spec) and direction is string indicating whether
|
|
170 |
// we are performing the forward substitution ("encrypt") or inverse
|
|
171 |
// substitution (anything else)
|
|
172 |
|
|
173 |
function byteSub(state, direction) {
|
|
174 |
var S;
|
|
175 |
if (direction == "encrypt") // Point S to the SBox we're using
|
|
176 |
S = SBox;
|
|
177 |
else
|
|
178 |
S = SBoxInverse;
|
|
179 |
for (var i = 0; i < 4; i++) // Substitute for every byte in state
|
|
180 |
for (var j = 0; j < Nb; j++)
|
|
181 |
state[i][j] = S[state[i][j]];
|
|
182 |
}
|
|
183 |
|
|
184 |
// Performs the row shifting step of the cipher.
|
|
185 |
|
|
186 |
function shiftRow(state, direction) {
|
|
187 |
for (var i=1; i<4; i++) // Row 0 never shifts
|
|
188 |
if (direction == "encrypt")
|
|
189 |
state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]);
|
|
190 |
else
|
|
191 |
state[i] = cyclicShiftLeft(state[i], Nb - shiftOffsets[Nb][i]);
|
|
192 |
|
|
193 |
}
|
|
194 |
|
|
195 |
// Performs the column mixing step of the cipher. Most of these steps can
|
|
196 |
// be combined into table lookups on 32bit values (at least for encryption)
|
|
197 |
// to greatly increase the speed.
|
|
198 |
|
|
199 |
function mixColumn(state, direction) {
|
|
200 |
var b = []; // Result of matrix multiplications
|
|
201 |
for (var j = 0; j < Nb; j++) { // Go through each column...
|
|
202 |
for (var i = 0; i < 4; i++) { // and for each row in the column...
|
|
203 |
if (direction == "encrypt")
|
|
204 |
b[i] = mult_GF256(state[i][j], 2) ^ // perform mixing
|
|
205 |
mult_GF256(state[(i+1)%4][j], 3) ^
|
|
206 |
state[(i+2)%4][j] ^
|
|
207 |
state[(i+3)%4][j];
|
|
208 |
else
|
|
209 |
b[i] = mult_GF256(state[i][j], 0xE) ^
|
|
210 |
mult_GF256(state[(i+1)%4][j], 0xB) ^
|
|
211 |
mult_GF256(state[(i+2)%4][j], 0xD) ^
|
|
212 |
mult_GF256(state[(i+3)%4][j], 9);
|
|
213 |
}
|
|
214 |
for (var i = 0; i < 4; i++) // Place result back into column
|
|
215 |
state[i][j] = b[i];
|
|
216 |
}
|
|
217 |
}
|
|
218 |
|
|
219 |
// Adds the current round key to the state information. Straightforward.
|
|
220 |
|
|
221 |
function addRoundKey(state, roundKey) {
|
|
222 |
for (var j = 0; j < Nb; j++) { // Step through columns...
|
|
223 |
state[0][j] ^= (roundKey[j] & 0xFF); // and XOR
|
|
224 |
state[1][j] ^= ((roundKey[j]>>8) & 0xFF);
|
|
225 |
state[2][j] ^= ((roundKey[j]>>16) & 0xFF);
|
|
226 |
state[3][j] ^= ((roundKey[j]>>24) & 0xFF);
|
|
227 |
}
|
|
228 |
}
|
|
229 |
|
|
230 |
// This function creates the expanded key from the input (128/192/256-bit)
|
|
231 |
// key. The parameter key is an array of bytes holding the value of the key.
|
|
232 |
// The returned value is an array whose elements are the 32-bit words that
|
|
233 |
// make up the expanded key.
|
|
234 |
|
|
235 |
function keyExpansion(key) {
|
|
236 |
var expandedKey = new Array();
|
|
237 |
var temp;
|
|
238 |
|
|
239 |
// in case the key size or parameters were changed...
|
|
240 |
Nk = keySizeInBits / 32;
|
|
241 |
Nb = blockSizeInBits / 32;
|
|
242 |
Nr = roundsArray[Nk][Nb];
|
|
243 |
|
|
244 |
for (var j=0; j < Nk; j++) // Fill in input key first
|
|
245 |
expandedKey[j] =
|
|
246 |
(key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24);
|
|
247 |
|
|
248 |
// Now walk down the rest of the array filling in expanded key bytes as
|
|
249 |
// per Rijndael's spec
|
|
250 |
for (j = Nk; j < Nb * (Nr + 1); j++) { // For each word of expanded key
|
|
251 |
temp = expandedKey[j - 1];
|
|
252 |
if (j % Nk == 0)
|
|
253 |
temp = ( (SBox[(temp>>8) & 0xFF]) |
|
|
254 |
(SBox[(temp>>16) & 0xFF]<<8) |
|
|
255 |
(SBox[(temp>>24) & 0xFF]<<16) |
|
|
256 |
(SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) - 1];
|
|
257 |
else if (Nk > 6 && j % Nk == 4)
|
|
258 |
temp = (SBox[(temp>>24) & 0xFF]<<24) |
|
|
259 |
(SBox[(temp>>16) & 0xFF]<<16) |
|
|
260 |
(SBox[(temp>>8) & 0xFF]<<8) |
|
|
261 |
(SBox[temp & 0xFF]);
|
|
262 |
expandedKey[j] = expandedKey[j-Nk] ^ temp;
|
|
263 |
}
|
|
264 |
return expandedKey;
|
|
265 |
}
|
|
266 |
|
|
267 |
// Rijndael's round functions...
|
|
268 |
|
|
269 |
function Round(state, roundKey) {
|
|
270 |
byteSub(state, "encrypt");
|
|
271 |
shiftRow(state, "encrypt");
|
|
272 |
mixColumn(state, "encrypt");
|
|
273 |
addRoundKey(state, roundKey);
|
|
274 |
}
|
|
275 |
|
|
276 |
function InverseRound(state, roundKey) {
|
|
277 |
addRoundKey(state, roundKey);
|
|
278 |
mixColumn(state, "decrypt");
|
|
279 |
shiftRow(state, "decrypt");
|
|
280 |
byteSub(state, "decrypt");
|
|
281 |
}
|
|
282 |
|
|
283 |
function FinalRound(state, roundKey) {
|
|
284 |
byteSub(state, "encrypt");
|
|
285 |
shiftRow(state, "encrypt");
|
|
286 |
addRoundKey(state, roundKey);
|
|
287 |
}
|
|
288 |
|
|
289 |
function InverseFinalRound(state, roundKey){
|
|
290 |
addRoundKey(state, roundKey);
|
|
291 |
shiftRow(state, "decrypt");
|
|
292 |
byteSub(state, "decrypt");
|
|
293 |
}
|
|
294 |
|
|
295 |
// encrypt is the basic encryption function. It takes parameters
|
|
296 |
// block, an array of bytes representing a plaintext block, and expandedKey,
|
|
297 |
// an array of words representing the expanded key previously returned by
|
|
298 |
// keyExpansion(). The ciphertext block is returned as an array of bytes.
|
|
299 |
|
|
300 |
function encrypt(block, expandedKey) {
|
|
301 |
var i;
|
|
302 |
if (!block || block.length*8 != blockSizeInBits)
|
|
303 |
return;
|
|
304 |
if (!expandedKey)
|
|
305 |
return;
|
|
306 |
|
|
307 |
block = packBytes(block);
|
|
308 |
addRoundKey(block, expandedKey);
|
|
309 |
for (i=1; i<Nr; i++)
|
|
310 |
Round(block, expandedKey.slice(Nb*i, Nb*(i+1)));
|
|
311 |
FinalRound(block, expandedKey.slice(Nb*Nr));
|
|
312 |
return unpackBytes(block);
|
|
313 |
}
|
|
314 |
|
|
315 |
// decrypt is the basic decryption function. It takes parameters
|
|
316 |
// block, an array of bytes representing a ciphertext block, and expandedKey,
|
|
317 |
// an array of words representing the expanded key previously returned by
|
|
318 |
// keyExpansion(). The decrypted block is returned as an array of bytes.
|
|
319 |
|
|
320 |
function decrypt(block, expandedKey) {
|
|
321 |
var i;
|
|
322 |
if (!block || block.length*8 != blockSizeInBits)
|
|
323 |
return;
|
|
324 |
if (!expandedKey)
|
|
325 |
return;
|
|
326 |
|
|
327 |
block = packBytes(block);
|
|
328 |
InverseFinalRound(block, expandedKey.slice(Nb*Nr));
|
|
329 |
for (i = Nr - 1; i>0; i--)
|
|
330 |
InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1)));
|
|
331 |
addRoundKey(block, expandedKey);
|
|
332 |
return unpackBytes(block);
|
|
333 |
}
|
|
334 |
|
|
335 |
// This method takes a byte array (byteArray) and converts it to a string by
|
|
336 |
// applying String.fromCharCode() to each value and concatenating the result.
|
|
337 |
// The resulting string is returned. Note that this function SKIPS zero bytes
|
|
338 |
// under the assumption that they are padding added in formatPlaintext().
|
|
339 |
// Obviously, do not invoke this method on raw data that can contain zero
|
|
340 |
// bytes. It is really only appropriate for printable ASCII/Latin-1
|
|
341 |
// values. Roll your own function for more robust functionality :)
|
|
342 |
|
|
343 |
function byteArrayToString(byteArray) {
|
|
344 |
var result = "";
|
|
345 |
for(var i=0; i<byteArray.length; i++)
|
|
346 |
if (byteArray[i] != 0)
|
|
347 |
result += String.fromCharCode(byteArray[i]);
|
|
348 |
return result;
|
|
349 |
}
|
|
350 |
|
|
351 |
// This function takes an array of bytes (byteArray) and converts them
|
|
352 |
// to a hexadecimal string. Array element 0 is found at the beginning of
|
|
353 |
// the resulting string, high nibble first. Consecutive elements follow
|
|
354 |
// similarly, for example [16, 255] --> "10ff". The function returns a
|
|
355 |
// string.
|
|
356 |
|
|
357 |
function byteArrayToHex(byteArray) {
|
|
358 |
var result = "";
|
|
359 |
if (!byteArray)
|
|
360 |
return;
|
|
361 |
for (var i=0; i<byteArray.length; i++)
|
|
362 |
result += ((byteArray[i]<16) ? "0" : "") + byteArray[i].toString(16);
|
|
363 |
|
|
364 |
return result;
|
|
365 |
}
|
|
366 |
|
|
367 |
// This function converts a string containing hexadecimal digits to an
|
|
368 |
// array of bytes. The resulting byte array is filled in the order the
|
|
369 |
// values occur in the string, for example "10FF" --> [16, 255]. This
|
|
370 |
// function returns an array.
|
|
371 |
|
|
372 |
function hexToByteArray(hexString) {
|
|
373 |
/*
|
|
374 |
var byteArray = [];
|
|
375 |
if (hexString.length % 2) // must have even length
|
|
376 |
return;
|
|
377 |
if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0)
|
|
378 |
hexString = hexString.substring(2);
|
|
379 |
for (var i = 0; i<hexString.length; i += 2)
|
|
380 |
byteArray[Math.floor(i/2)] = parseInt(hexString.slice(i, i+2), 16);
|
|
381 |
return byteArray;
|
|
382 |
*/
|
|
383 |
var bytes = new Array();
|
|
384 |
hexString = str_split(hexString, 2);
|
|
385 |
//alert(hexString.toString());
|
|
386 |
//return false;
|
|
387 |
for( var i in hexString )
|
|
388 |
{
|
|
389 |
bytes[bytes.length] = parseInt(hexString[i], 16);
|
|
390 |
}
|
|
391 |
//alert(bytes.toString());
|
|
392 |
return bytes;
|
|
393 |
}
|
|
394 |
|
|
395 |
// This function packs an array of bytes into the four row form defined by
|
|
396 |
// Rijndael. It assumes the length of the array of bytes is divisible by
|
|
397 |
// four. Bytes are filled in according to the Rijndael spec (starting with
|
|
398 |
// column 0, row 0 to 3). This function returns a 2d array.
|
|
399 |
|
|
400 |
function packBytes(octets) {
|
|
401 |
var state = new Array();
|
|
402 |
if (!octets || octets.length % 4)
|
|
403 |
return;
|
|
404 |
|
|
405 |
state[0] = new Array(); state[1] = new Array();
|
|
406 |
state[2] = new Array(); state[3] = new Array();
|
|
407 |
for (var j=0; j<octets.length; j+= 4) {
|
|
408 |
state[0][j/4] = octets[j];
|
|
409 |
state[1][j/4] = octets[j+1];
|
|
410 |
state[2][j/4] = octets[j+2];
|
|
411 |
state[3][j/4] = octets[j+3];
|
|
412 |
}
|
|
413 |
return state;
|
|
414 |
}
|
|
415 |
|
|
416 |
// This function unpacks an array of bytes from the four row format preferred
|
|
417 |
// by Rijndael into a single 1d array of bytes. It assumes the input "packed"
|
|
418 |
// is a packed array. Bytes are filled in according to the Rijndael spec.
|
|
419 |
// This function returns a 1d array of bytes.
|
|
420 |
|
|
421 |
function unpackBytes(packed) {
|
|
422 |
var result = new Array();
|
|
423 |
for (var j=0; j<packed[0].length; j++) {
|
|
424 |
result[result.length] = packed[0][j];
|
|
425 |
result[result.length] = packed[1][j];
|
|
426 |
result[result.length] = packed[2][j];
|
|
427 |
result[result.length] = packed[3][j];
|
|
428 |
}
|
|
429 |
return result;
|
|
430 |
}
|
|
431 |
|
|
432 |
// This function takes a prospective plaintext (string or array of bytes)
|
|
433 |
// and pads it with zero bytes if its length is not a multiple of the block
|
|
434 |
// size. If plaintext is a string, it is converted to an array of bytes
|
|
435 |
// in the process. The type checking can be made much nicer using the
|
|
436 |
// instanceof operator, but this operator is not available until IE5.0 so I
|
|
437 |
// chose to use the heuristic below.
|
|
438 |
|
|
439 |
function formatPlaintext(plaintext) {
|
|
440 |
var bpb = blockSizeInBits / 8; // bytes per block
|
|
441 |
var i;
|
|
442 |
|
|
443 |
// if primitive string or String instance
|
|
444 |
if (typeof plaintext == "string" || plaintext.split) {
|
|
445 |
// alert('AUUGH you idiot it\'s NOT A STRING ITS A '+typeof(plaintext)+'!!!');
|
|
446 |
// return false;
|
|
447 |
plaintext = plaintext.split("");
|
|
448 |
// Unicode issues here (ignoring high byte)
|
|
449 |
for (i=0; i<plaintext.length; i++)
|
|
450 |
plaintext[i] = plaintext[i].charCodeAt(0) & 0xFF;
|
|
451 |
}
|
|
452 |
|
|
453 |
for (i = bpb - (plaintext.length % bpb); i > 0 && i < bpb; i--)
|
|
454 |
plaintext[plaintext.length] = 0;
|
|
455 |
|
|
456 |
return plaintext;
|
|
457 |
}
|
|
458 |
|
|
459 |
// Returns an array containing "howMany" random bytes. YOU SHOULD CHANGE THIS
|
|
460 |
// TO RETURN HIGHER QUALITY RANDOM BYTES IF YOU ARE USING THIS FOR A "REAL"
|
|
461 |
// APPLICATION.
|
|
462 |
|
|
463 |
function getRandomBytes(howMany) {
|
|
464 |
var i;
|
|
465 |
var bytes = new Array();
|
|
466 |
for (i=0; i<howMany; i++)
|
|
467 |
bytes[i] = Math.round(Math.random()*255);
|
|
468 |
return bytes;
|
|
469 |
}
|
|
470 |
|
|
471 |
// rijndaelEncrypt(plaintext, key, mode)
|
|
472 |
// Encrypts the plaintext using the given key and in the given mode.
|
|
473 |
// The parameter "plaintext" can either be a string or an array of bytes.
|
|
474 |
// The parameter "key" must be an array of key bytes. If you have a hex
|
|
475 |
// string representing the key, invoke hexToByteArray() on it to convert it
|
|
476 |
// to an array of bytes. The third parameter "mode" is a string indicating
|
|
477 |
// the encryption mode to use, either "ECB" or "CBC". If the parameter is
|
|
478 |
// omitted, ECB is assumed.
|
|
479 |
//
|
|
480 |
// An array of bytes representing the cihpertext is returned. To convert
|
|
481 |
// this array to hex, invoke byteArrayToHex() on it. If you are using this
|
|
482 |
// "for real" it is a good idea to change the function getRandomBytes() to
|
|
483 |
// something that returns truly random bits.
|
|
484 |
|
|
485 |
function rijndaelEncrypt(plaintext, key, mode) {
|
|
486 |
var expandedKey, i, aBlock;
|
|
487 |
var bpb = blockSizeInBits / 8; // bytes per block
|
|
488 |
var ct; // ciphertext
|
|
489 |
|
|
490 |
if (typeof plaintext != 'object' || typeof key != 'object')
|
|
491 |
{
|
|
492 |
alert( 'Invalid params\nplaintext: '+typeof(plaintext)+'\nkey: '+typeof(key) );
|
|
493 |
return false;
|
|
494 |
}
|
|
495 |
if (key.length*8 == keySizeInBits+8)
|
|
496 |
key.length = keySizeInBits / 8;
|
|
497 |
if (key.length*8 != keySizeInBits)
|
|
498 |
{
|
|
499 |
alert( 'Key length is bad!\nLength: '+key.length+'\nExpected: '+keySizeInBits / 8 );
|
|
500 |
return false;
|
|
501 |
}
|
|
502 |
if (mode == "CBC")
|
|
503 |
ct = getRandomBytes(bpb); // get IV
|
|
504 |
else {
|
|
505 |
mode = "ECB";
|
|
506 |
ct = new Array();
|
|
507 |
}
|
|
508 |
|
|
509 |
// convert plaintext to byte array and pad with zeros if necessary.
|
|
510 |
plaintext = formatPlaintext(plaintext);
|
|
511 |
|
|
512 |
expandedKey = keyExpansion(key);
|
|
513 |
|
|
514 |
for (var block=0; block<plaintext.length / bpb; block++) {
|
|
515 |
aBlock = plaintext.slice(block*bpb, (block+1)*bpb);
|
|
516 |
if (mode == "CBC")
|
|
517 |
for (var i=0; i<bpb; i++)
|
|
518 |
aBlock[i] ^= ct[block*bpb + i];
|
|
519 |
ct = ct.concat(encrypt(aBlock, expandedKey));
|
|
520 |
}
|
|
521 |
|
|
522 |
return ct;
|
|
523 |
}
|
|
524 |
|
|
525 |
// rijndaelDecrypt(ciphertext, key, mode)
|
|
526 |
// Decrypts the using the given key and mode. The parameter "ciphertext"
|
|
527 |
// must be an array of bytes. The parameter "key" must be an array of key
|
|
528 |
// bytes. If you have a hex string representing the ciphertext or key,
|
|
529 |
// invoke hexToByteArray() on it to convert it to an array of bytes. The
|
|
530 |
// parameter "mode" is a string, either "CBC" or "ECB".
|
|
531 |
//
|
|
532 |
// An array of bytes representing the plaintext is returned. To convert
|
|
533 |
// this array to a hex string, invoke byteArrayToHex() on it. To convert it
|
|
534 |
// to a string of characters, you can use byteArrayToString().
|
|
535 |
|
|
536 |
function rijndaelDecrypt(ciphertext, key, mode) {
|
|
537 |
var expandedKey;
|
|
538 |
var bpb = blockSizeInBits / 8; // bytes per block
|
|
539 |
var pt = new Array(); // plaintext array
|
|
540 |
var aBlock; // a decrypted block
|
|
541 |
var block; // current block number
|
|
542 |
|
|
543 |
if (!ciphertext || !key || typeof ciphertext == "string")
|
|
544 |
return;
|
|
545 |
if (key.length*8 != keySizeInBits)
|
|
546 |
return;
|
|
547 |
if (!mode)
|
|
548 |
mode = "ECB"; // assume ECB if mode omitted
|
|
549 |
|
|
550 |
expandedKey = keyExpansion(key);
|
|
551 |
|
|
552 |
// work backwards to accomodate CBC mode
|
|
553 |
for (block=(ciphertext.length / bpb)-1; block>0; block--) {
|
|
554 |
aBlock =
|
|
555 |
decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey);
|
|
556 |
if (mode == "CBC")
|
|
557 |
for (var i=0; i<bpb; i++)
|
|
558 |
pt[(block-1)*bpb + i] = aBlock[i] ^ ciphertext[(block-1)*bpb + i];
|
|
559 |
else
|
|
560 |
pt = aBlock.concat(pt);
|
|
561 |
}
|
|
562 |
|
|
563 |
// do last block if ECB (skips the IV in CBC)
|
|
564 |
if (mode == "ECB")
|
|
565 |
pt = decrypt(ciphertext.slice(0, bpb), expandedKey).concat(pt);
|
|
566 |
|
|
567 |
return pt;
|
|
568 |
}
|
|
569 |
|
|
570 |
function stringToByteArray(text)
|
|
571 |
{
|
|
572 |
result = new Array();
|
|
573 |
for ( i=0; i<text.length; i++ )
|
|
574 |
{
|
|
575 |
result[result.length] = text.charCodeAt(i);
|
|
576 |
}
|
|
577 |
return result;
|
|
578 |
}
|
|
579 |
|