diff -r 5e8fd89c02ea -r a38876c0793c includes/clientside/static/crypto.js --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/includes/clientside/static/crypto.js Tue Jun 24 23:37:23 2008 -0400 @@ -0,0 +1,2220 @@ +//////////////////////////////////////////////////////////////////////////////////////// +// Big Integer Library v. 5.1 +// Created 2000, last modified 2007 +// Leemon Baird +// www.leemon.com +// +// Version history: +// +// v 5.1 8 Oct 2007 +// - renamed inverseModInt_ to inverseModInt since it doesn't change its parameters +// - added functions GCD and randBigInt, which call GCD_ and randBigInt_ +// - fixed a bug found by Rob Visser (see comment with his name below) +// - improved comments +// +// This file is public domain. You can use it for any purpose without restriction. +// I do not guarantee that it is correct, so use it at your own risk. If you use +// it for something interesting, I'd appreciate hearing about it. If you find +// any bugs or make any improvements, I'd appreciate hearing about those too. +// It would also be nice if my name and address were left in the comments. +// But none of that is required. +// +// This code defines a bigInt library for arbitrary-precision integers. +// A bigInt is an array of integers storing the value in chunks of bpe bits, +// little endian (buff[0] is the least significant word). +// Negative bigInts are stored two's complement. +// Some functions assume their parameters have at least one leading zero element. +// Functions with an underscore at the end of the name have unpredictable behavior in case of overflow, +// so the caller must make sure the arrays must be big enough to hold the answer. +// For each function where a parameter is modified, that same +// variable must not be used as another argument too. +// So, you cannot square x by doing multMod_(x,x,n). +// You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n). +// +// These functions are designed to avoid frequent dynamic memory allocation in the inner loop. +// For most functions, if it needs a BigInt as a local variable it will actually use +// a global, and will only allocate to it only when it's not the right size. This ensures +// that when a function is called repeatedly with same-sized parameters, it only allocates +// memory on the first call. +// +// Note that for cryptographic purposes, the calls to Math.random() must +// be replaced with calls to a better pseudorandom number generator. +// +// In the following, "bigInt" means a bigInt with at least one leading zero element, +// and "integer" means a nonnegative integer less than radix. In some cases, integer +// can be negative. Negative bigInts are 2s complement. +// +// The following functions do not modify their inputs. +// Those returning a bigInt, string, or Array will dynamically allocate memory for that value. +// Those returning a boolean will return the integer 0 (false) or 1 (true). +// Those returning boolean or int will not allocate memory except possibly on the first time they're called with a given parameter size. +// +// bigInt add(x,y) //return (x+y) for bigInts x and y. +// bigInt addInt(x,n) //return (x+n) where x is a bigInt and n is an integer. +// string bigInt2str(x,base) //return a string form of bigInt x in a given base, with 2 <= base <= 95 +// int bitSize(x) //return how many bits long the bigInt x is, not counting leading zeros +// bigInt dup(x) //return a copy of bigInt x +// boolean equals(x,y) //is the bigInt x equal to the bigint y? +// boolean equalsInt(x,y) //is bigint x equal to integer y? +// bigInt expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed +// Array findPrimes(n) //return array of all primes less than integer n +// bigInt GCD(x,y) //return greatest common divisor of bigInts x and y (each with same number of elements). +// boolean greater(x,y) //is x>y? (x and y are nonnegative bigInts) +// boolean greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y? +// bigInt int2bigInt(t,n,m) //return a bigInt equal to integer t, with at least n bits and m array elements +// bigInt inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null +// int inverseModInt(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse +// boolean isZero(x) //is the bigInt x equal to zero? +// boolean millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime (as opposed to definitely composite)? +// bigInt mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n. +// int modInt(x,n) //return x mod n for bigInt x and integer n. +// bigInt mult(x,y) //return x*y for bigInts x and y. This is faster when y=1). If s=1, then the most significant of those n bits is set to 1. +// bigInt randTruePrime(k) //return a new, random, k-bit, true prime bigInt using Maurer's algorithm. +// bigInt str2bigInt(s,b,n,m) //return a bigInt for number represented in string s in base b with at least n bits and m array elements +// bigInt sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement +// bigInt bigint_trim(x,k) //return a copy of x with exactly k leading zero elements +// +// +// The following functions each have a non-underscored version, which most users should call instead. +// These functions each write to a single parameter, and the caller is responsible for ensuring the array +// passed in is large enough to hold the result. +// +// void addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer +// void add_(x,y) //do x=x+y for bigInts x and y +// void copy_(x,y) //do x=y on bigInts x and y +// void copyInt_(x,n) //do x=n on bigInt x and integer n +// void GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). (This never overflows its array). +// boolean inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist +// void mod_(x,n) //do x=x mod n for bigInts x and n. (This never overflows its array). +// void mult_(x,y) //do x=x*y for bigInts x and y. +// void multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n. +// void powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1. +// void randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1. +// void randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb. +// void sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement. +// +// The following functions do NOT have a non-underscored version. +// They each write a bigInt result to one or more parameters. The caller is responsible for +// ensuring the arrays passed in are large enough to hold the results. +// +// void addShift_(x,y,ys) //do x=x+(y<<(ys*bpe)) +// void carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits. +// void divide_(x,y,q,r) //divide x by y giving quotient q and remainder r +// int divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder. (This never overflows its array). +// int eGCD_(x,y,d,a,b) //sets a,b,d to positive bigInts such that d = GCD_(x,y) = a*x-b*y +// void halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement. (This never overflows its array). +// void leftShift_(x,n) //left shift bigInt x by n bits. n64 multiplier, but not with JavaScript's 32*32->32) +// - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square +// followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that +// method would be slower. This is unfortunate because the code currently spends almost all of its time +// doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring +// would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded +// sentences that seem to imply it's faster to do a non-modular square followed by a single +// Montgomery reduction, but that's obviously wrong. +//////////////////////////////////////////////////////////////////////////////////////// + +//globals +bpe=0; //bits stored per array element +mask=0; //AND this with an array element to chop it down to bpe bits +radix=mask+1; //equals 2^bpe. A single 1 bit to the left of the last bit of mask. + +//the digits for converting to different bases +digitsStr='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-'; + +//initialize the global variables +for (bpe=0; (1<<(bpe+1)) > (1<>=1; //bpe=number of bits in one element of the array representing the bigInt +mask=(1<0); j--); + for (z=0,w=x[j]; w; (w>>=1),z++); + z+=bpe*j; + return z; +} + +//return a copy of x with at least n elements, adding leading zeros if needed +function expand(x,n) { + var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0); + copy_(ans,x); + return ans; +} + +//return a k-bit true random prime using Maurer's algorithm. +function randTruePrime(k) { + var ans=int2bigInt(0,k,0); + randTruePrime_(ans,k); + return bigint_trim(ans,1); +} + +//return a new bigInt equal to (x mod n) for bigInts x and n. +function mod(x,n) { + var ans=dup(x); + mod_(ans,n); + return bigint_trim(ans,1); +} + +//return (x+n) where x is a bigInt and n is an integer. +function addInt(x,n) { + var ans=expand(x,x.length+1); + addInt_(ans,n); + return bigint_trim(ans,1); +} + +//return x*y for bigInts x and y. This is faster when yy.length ? x.length+1 : y.length+1)); + sub_(ans,y); + return bigint_trim(ans,1); +} + +//return (x+y) for bigInts x and y. +function add(x,y) { + var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); + add_(ans,y); + return bigint_trim(ans,1); +} + +//return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null +function inverseMod(x,n) { + var ans=expand(x,n.length); + var s; + s=inverseMod_(ans,n); + return s ? bigint_trim(ans,1) : null; +} + +//return (x*y mod n) for bigInts x,y,n. For greater speed, let y= 2 + + if (s_i2.length!=ans.length) { + s_i2=dup(ans); + s_R =dup(ans); + s_n1=dup(ans); + s_r2=dup(ans); + s_d =dup(ans); + s_x1=dup(ans); + s_x2=dup(ans); + s_b =dup(ans); + s_n =dup(ans); + s_i =dup(ans); + s_rm=dup(ans); + s_q =dup(ans); + s_a =dup(ans); + s_aa=dup(ans); + } + + if (k <= recLimit) { //generate small random primes by trial division up to its square root + pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k) + copyInt_(ans,0); + for (dd=1;dd;) { + dd=0; + ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits + for (r=1; k-k*r<=m; ) + r=pows[Math.floor(Math.random()*512)]; //r=Math.pow(2,Math.random()-1); + else + r=.5; + + //simulation suggests the more complex algorithm using r=.333 is only slightly faster. + + recSize=Math.floor(r*k)+1; + + randTruePrime_(s_q,recSize); + copyInt_(s_i2,0); + s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2) + divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q)) + + z=bitSize(s_i); + + for (;;) { + for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1] + randBigInt_(s_R,z,0); + if (greater(s_i,s_R)) + break; + } //now s_R is in the range [0,s_i-1] + addInt_(s_R,1); //now s_R is in the range [1,s_i] + add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i] + + copy_(s_n,s_q); + mult_(s_n,s_R); + multInt_(s_n,2); + addInt_(s_n,1); //s_n=2*s_R*s_q+1 + + copy_(s_r2,s_R); + multInt_(s_r2,2); //s_r2=2*s_R + + //check s_n for divisibility by small primes up to B + for (divisible=0,j=0; (j0); j--); //strip leading zeros + for (zz=0,w=s_n[j]; w; (w>>=1),zz++); + zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros + for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1] + randBigInt_(s_a,zz,0); + if (greater(s_n,s_a)) + break; + } //now s_a is in the range [0,s_n-1] + addInt_(s_n,3); //now s_a is in the range [0,s_n-4] + addInt_(s_a,2); //now s_a is in the range [2,s_n-2] + copy_(s_b,s_a); + copy_(s_n1,s_n); + addInt_(s_n1,-1); + powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n + addInt_(s_b,-1); + if (isZero(s_b)) { + copy_(s_b,s_a); + powMod_(s_b,s_r2,s_n); + addInt_(s_b,-1); + copy_(s_aa,s_n); + copy_(s_d,s_b); + GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime + if (equalsInt(s_d,1)) { + copy_(ans,s_aa); + return; //if we've made it this far, then s_n is absolutely guaranteed to be prime + } + } + } + } +} + +//Return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1. +function randBigInt(n,s) { + var a,b; + a=Math.floor((n-1)/bpe)+2; //# array elements to hold the BigInt with a leading 0 element + b=int2bigInt(0,0,a); + randBigInt_(b,n,s); + return b; +} + +//Set b to an n-bit random BigInt. If s=1, then the most significant of those n bits is set to 1. +//Array b must be big enough to hold the result. Must have n>=1 +function randBigInt_(b,n,s) { + var i,a; + for (i=0;i=0;i--); //find most significant element of x + xp=x[i]; + yp=y[i]; + A=1; B=0; C=0; D=1; + while ((yp+C) && (yp+D)) { + q =Math.floor((xp+A)/(yp+C)); + qp=Math.floor((xp+B)/(yp+D)); + if (q!=qp) + break; + t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp) + t= B-q*D; B=D; D=t; + t=xp-q*yp; xp=yp; yp=t; + } + if (B) { + copy_(T,x); + linComb_(x,y,A,B); //x=A*x+B*y + linComb_(y,T,D,C); //y=D*y+C*T + } else { + mod_(x,y); + copy_(T,x); + copy_(x,y); + copy_(y,T); + } + } + if (y[0]==0) + return; + t=modInt(x,y[0]); + copyInt_(x,y[0]); + y[0]=t; + while (y[0]) { + x[0]%=y[0]; + t=x[0]; x[0]=y[0]; y[0]=t; + } +} + +//do x=x**(-1) mod n, for bigInts x and n. +//If no inverse exists, it sets x to zero and returns 0, else it returns 1. +//The x array must be at least as large as the n array. +function inverseMod_(x,n) { + var k=1+2*Math.max(x.length,n.length); + + if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist + copyInt_(x,0); + return 0; + } + + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_v=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + + copy_(eg_u,x); + copy_(eg_v,n); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while eg_u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,n); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(eg_v[0]&1)) { //while eg_v is even + halve_(eg_v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,n); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(eg_v,eg_u)) { //eg_v <= eg_u + sub_(eg_u,eg_v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //eg_v > eg_u + sub_(eg_v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + + if (equalsInt(eg_u,0)) { + if (negative(eg_C)) //make sure answer is nonnegative + add_(eg_C,n); + copy_(x,eg_C); + + if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse + copyInt_(x,0); + return 0; + } + return 1; + } + } +} + +//return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse +function inverseModInt(x,n) { + var a=1,b=0,t; + for (;;) { + if (x==1) return a; + if (x==0) return 0; + b-=a*Math.floor(n/x); + n%=x; + + if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to += + if (n==0) return 0; + a-=b*Math.floor(x/n); + x%=n; + } +} + +//this deprecated function is for backward compatibility only. +function inverseModInt_(x,n) { + return inverseModInt(x,n); +} + + +//Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that: +// v = GCD_(x,y) = a*x-b*y +//The bigInts v, a, b, must have exactly as many elements as the larger of x and y. +function eGCD_(x,y,v,a,b) { + var g=0; + var k=Math.max(x.length,y.length); + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even + halve_(x); + halve_(y); + g++; + } + copy_(eg_u,x); + copy_(v,y); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,y); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(v[0]&1)) { //while v is even + halve_(v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,y); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(v,eg_u)) { //v<=u + sub_(eg_u,v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //v>u + sub_(v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + if (equalsInt(eg_u,0)) { + if (negative(eg_C)) { //make sure a (C)is nonnegative + add_(eg_C,y); + sub_(eg_D,x); + } + multInt_(eg_D,-1); ///make sure b (D) is nonnegative + copy_(a,eg_C); + copy_(b,eg_D); + leftShift_(v,g); + return; + } + } +} + + +//is bigInt x negative? +function negative(x) { + return ((x[x.length-1]>>(bpe-1))&1); +} + + +//is (x << (shift*bpe)) > y? +//x and y are nonnegative bigInts +//shift is a nonnegative integer +function greaterShift(x,y,shift) { + var kx=x.length, ky=y.length; + k=((kx+shift)=0; i++) + if (x[i]>0) + return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger + for (i=kx-1+shift; i0) + return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger + for (i=k-1; i>=shift; i--) + if (x[i-shift]>y[i]) return 1; + else if (x[i-shift] y? (x and y both nonnegative) +function greater(x,y) { + var i; + var k=(x.length=0;i--) + if (x[i]>y[i]) + return 1; + else if (x[i]= y.length >= 2. +function divide_(x,y,q,r) { + var kx, ky; + var i,j,y1,y2,c,a,b; + copy_(r,x); + for (ky=y.length;y[ky-1]==0;ky--); //ky is number of elements in y, not including leading zeros + + //normalize: ensure the most significant element of y has its highest bit set + b=y[ky-1]; + for (a=0; b; a++) + b>>=1; + a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element + leftShift_(y,a); //multiply both by 1<ky;kx--); //kx is number of elements in normalized x, not including leading zeros + + copyInt_(q,0); // q=0 + while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) { + subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky) + q[kx-ky]++; // q[kx-ky]++; + } // } + + for (i=kx-1; i>=ky; i--) { + if (r[i]==y[ky-1]) + q[i-ky]=mask; + else + q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]); + + //The following for(;;) loop is equivalent to the commented while loop, + //except that the uncommented version avoids overflow. + //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0 + // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2]) + // q[i-ky]--; + for (;;) { + y2=(ky>1 ? y[ky-2] : 0)*q[i-ky]; + c=y2>>bpe; + y2=y2 & mask; + y1=c+q[i-ky]*y[ky-1]; + c=y1>>bpe; + y1=y1 & mask; + + if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]) + q[i-ky]--; + else + break; + } + + linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky) + if (negative(r)) { + addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky) + q[i-ky]--; + } + } + + rightShift_(y,a); //undo the normalization step + rightShift_(r,a); //undo the normalization step +} + +//do carries and borrows so each element of the bigInt x fits in bpe bits. +function carry_(x) { + var i,k,c,b; + k=x.length; + c=0; + for (i=0;i>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + } +} + +//return x mod n for bigInt x and integer n. +function modInt(x,n) { + var i,c=0; + for (i=x.length-1; i>=0; i--) + c=(c*radix+x[i])%n; + return c; +} + +//convert the integer t into a bigInt with at least the given number of bits. +//the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word) +//Pad the array with leading zeros so that it has at least minSize elements. +//There will always be at least one leading 0 element. +function int2bigInt(t,bits,minSize) { + var i,k; + k=Math.ceil(bits/bpe)+1; + k=minSize>k ? minSize : k; + buff=new Array(k); + copyInt_(buff,t); + return buff; +} + +//return the bigInt given a string representation in a given base. +//Pad the array with leading zeros so that it has at least minSize elements. +//If base=-1, then it reads in a space-separated list of array elements in decimal. +//The array will always have at least one leading zero, unless base=-1. +function str2bigInt(s,base,minSize) { + var d, i, j, x, y, kk; + var k=s.length; + if (base==-1) { //comma-separated list of array elements in decimal + x=new Array(0); + for (;;) { + y=new Array(x.length+1); + for (i=0;i=36) //convert lowercase to uppercase if base<=36 + d-=26; + if (d=0) { //ignore illegal characters + multInt_(x,base); + addInt_(x,d); + } + } + + for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros + k=minSize>k+1 ? minSize : k+1; + y=new Array(k); + kk=ky.length) { + for (;i0;i--) + s+=x[i]+','; + s+=x[0]; + } + else { //return it in the given base + while (!isZero(s6)) { + t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base); + s=digitsStr.substring(t,t+1)+s; + } + } + if (s.length==0) + s="0"; + return s; +} + +//returns a duplicate of bigInt x +function dup(x) { + var i; + buff=new Array(x.length); + copy_(buff,x); + return buff; +} + +//do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y). +function copy_(x,y) { + var i; + var k=x.length>=bpe; + } +} + +//do x=x+n where x is a bigInt and n is an integer. +//x must be large enough to hold the result. +function addInt_(x,n) { + var i,k,c,b; + x[0]+=n; + k=x.length; + c=0; + for (i=0;i>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + if (!c) return; //stop carrying as soon as the carry_ is zero + } +} + +//right shift bigInt x by n bits. 0 <= n < bpe. +function rightShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=0;i>n)); + } + x[i]>>=n; +} + +//do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement +function halve_(x) { + var i; + for (i=0;i>1)); + } + x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same +} + +//left shift bigInt x by n bits. +function leftShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=x.length; i>=k; i--) //left shift x by k elements + x[i]=x[i-k]; + for (;i>=0;i--) + x[i]=0; + n%=bpe; + } + if (!n) + return; + for (i=x.length-1;i>0;i--) { + x[i]=mask & ((x[i]<>(bpe-n))); + } + x[i]=mask & (x[i]<>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + } +} + +//do x=floor(x/n) for bigInt x and integer n, and return the remainder +function divInt_(x,n) { + var i,r=0,s; + for (i=x.length-1;i>=0;i--) { + s=r*radix+x[i]; + x[i]=Math.floor(s/n); + r=s%n; + } + return r; +} + +//do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b. +//x must be large enough to hold the answer. +function linComb_(x,y,a,b) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;i>=bpe; + } +} + +//do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys. +//x must be large enough to hold the answer. +function linCombShift_(x,y,b,ys) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. +//x must be large enough to hold the answer. +function addShift_(x,y,ys) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. +//x must be large enough to hold the answer. +function subShift_(x,y,ys) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x-y for bigInts x and y. +//x must be large enough to hold the answer. +//negative answers will be 2s complement +function sub_(x,y) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x+y for bigInts x and y. +//x must be large enough to hold the answer. +function add_(x,y) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x*y for bigInts x and y. This is faster when y0 && !x[kx-1]; kx--); //ignore leading zeros in x + k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n + if (s0.length!=k) + s0=new Array(k); + copyInt_(s0,0); + for (i=0;i>=bpe; + for (j=i+1;j>=bpe; + } + s0[i+kx]=c; + } + mod_(s0,n); + copy_(x,s0); +} + +//return x with exactly k leading zero elements +function bigint_trim(x,k) { + var i,y; + for (i=x.length; i>0 && !x[i-1]; i--); + y=new Array(i+k); + copy_(y,x); + return y; +} + +//do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1. +//this is faster when n is odd. x usually needs to have as many elements as n. +function powMod_(x,y,n) { + var k1,k2,kn,np; + if(s7.length!=n.length) + s7=dup(n); + + //for even modulus, use a simple square-and-multiply algorithm, + //rather than using the more complex Montgomery algorithm. + if ((n[0]&1)==0) { + copy_(s7,x); + copyInt_(x,1); + while(!equalsInt(y,0)) { + if (y[0]&1) + multMod_(x,s7,n); + divInt_(y,2); + squareMod_(s7,n); + } + return; + } + + //calculate np from n for the Montgomery multiplications + copyInt_(s7,0); + for (kn=n.length;kn>0 && !n[kn-1];kn--); + np=radix-inverseModInt(modInt(n,radix),radix); + s7[kn]=1; + multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n + + if (s3.length!=x.length) + s3=dup(x); + else + copy_(s3,x); + + for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y + if (y[k1]==0) { //anything to the 0th power is 1 + copyInt_(x,1); + return; + } + for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1] + for (;;) { + if (!(k2>>=1)) { //look at next bit of y + k1--; + if (k1<0) { + mont_(x,one,n,np); + return; + } + k2=1<<(bpe-1); + } + mont_(x,x,n,np); + + if (k2 & y[k1]) //if next bit is a 1 + mont_(x,s3,n,np); + } +} + +//do x=x*y*Ri mod n for bigInts x,y,n, +// where Ri = 2**(-kn*bpe) mod n, and kn is the +// number of elements in the n array, not +// counting leading zeros. +//x must be large enough to hold the answer. +//It's OK if x and y are the same variable. +//must have: +// x,y < n +// n is odd +// np = -(n^(-1)) mod radix +function mont_(x,y,n,np) { + var i,j,c,ui,t; + var kn=n.length; + var ky=y.length; + + if (sa.length!=kn) + sa=new Array(kn); + + for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n + //this function sometimes gives wrong answers when the next line is uncommented + //for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y + + copyInt_(sa,0); + + //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large keys + for (i=0; i> bpe; + t=x[i]; + + //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe + for (j=1;j>=bpe; + } + for (;j>=bpe; + } + sa[j-1]=c & mask; + } + + if (!greater(n,sa)) + sub_(sa,n); + copy_(x,sa); +} + + +/* rijndael.js Rijndael Reference Implementation + Copyright (c) 2001 Fritz Schneider + + This software is provided as-is, without express or implied warranty. + Permission to use, copy, modify, distribute or sell this software, with or + without fee, for any purpose and by any individual or organization, is hereby + granted, provided that the above copyright notice and this paragraph appear + in all copies. Distribution as a part of an application or binary must + include the above copyright notice in the documentation and/or other materials + provided with the application or distribution. + + + As the above disclaimer notes, you are free to use this code however you + want. However, I would request that you send me an email + (fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful + or instructional. Seeing that people are using the code acts as + encouragement for me to continue development. If you *really* want to thank + me you can buy the book I wrote with Thomas Powell, _JavaScript: + _The_Complete_Reference_ :) + + This code is an UNOPTIMIZED REFERENCE implementation of Rijndael. + If there is sufficient interest I can write an optimized (word-based, + table-driven) version, although you might want to consider using a + compiled language if speed is critical to your application. As it stands, + one run of the monte carlo test (10,000 encryptions) can take up to + several minutes, depending upon your processor. You shouldn't expect more + than a few kilobytes per second in throughput. + + Also note that there is very little error checking in these functions. + Doing proper error checking is always a good idea, but the ideal + implementation (using the instanceof operator and exceptions) requires + IE5+/NS6+, and I've chosen to implement this code so that it is compatible + with IE4/NS4. + + And finally, because JavaScript doesn't have an explicit byte/char data + type (although JavaScript 2.0 most likely will), when I refer to "byte" + in this code I generally mean "32 bit integer with value in the interval + [0,255]" which I treat as a byte. + + See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation + of the (very simple) API provided by this code. + + Fritz Schneider + fritz at cs.ucsd.edu + +*/ + +// Rijndael parameters -- Valid values are 128, 192, or 256 + +var keySizeInBits = ( typeof AES_BITS == 'number' ) ? AES_BITS : 128; +var blockSizeInBits = ( typeof AES_BLOCKSIZE == 'number' ) ? AES_BLOCKSIZE : 128; + +/////// You shouldn't have to modify anything below this line except for +/////// the function getRandomBytes(). +// +// Note: in the following code the two dimensional arrays are indexed as +// you would probably expect, as array[row][column]. The state arrays +// are 2d arrays of the form state[4][Nb]. + + +// The number of rounds for the cipher, indexed by [Nk][Nb] +var roundsArray = [ ,,,,[,,,,10,, 12,, 14],, + [,,,,12,, 12,, 14],, + [,,,,14,, 14,, 14] ]; + +// The number of bytes to shift by in shiftRow, indexed by [Nb][row] +var shiftOffsets = [ ,,,,[,1, 2, 3],,[,1, 2, 3],,[,1, 3, 4] ]; + +// The round constants used in subkey expansion +var Rcon = [ +0x01, 0x02, 0x04, 0x08, 0x10, 0x20, +0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, +0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, +0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, +0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ]; + +// Precomputed lookup table for the SBox +var SBox = [ + 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, +118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, +114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, +216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, +235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, +179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, +190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, +249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, +188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, +23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, +144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, + 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, +141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, + 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, +181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, +248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, +140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, + 22 ]; + +// Precomputed lookup table for the inverse SBox +var SBoxInverse = [ + 82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, +251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, +233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, +250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, +109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, +204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21, + 70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247, +228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2, +193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220, +234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173, + 53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29, + 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75, +198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168, + 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81, +127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160, +224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97, + 23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, +125 ]; + +function str_split(string, chunklen) +{ + if(!chunklen) chunklen = 1; + ret = new Array(); + for ( i = 0; i < string.length; i+=chunklen ) + { + ret[ret.length] = string.slice(i, i+chunklen); + } + return ret; +} + +// This method circularly shifts the array left by the number of elements +// given in its parameter. It returns the resulting array and is used for +// the ShiftRow step. Note that shift() and push() could be used for a more +// elegant solution, but they require IE5.5+, so I chose to do it manually. + +function cyclicShiftLeft(theArray, positions) { + var temp = theArray.slice(0, positions); + theArray = theArray.slice(positions).concat(temp); + return theArray; +} + +// Cipher parameters ... do not change these +var Nk = keySizeInBits / 32; +var Nb = blockSizeInBits / 32; +var Nr = roundsArray[Nk][Nb]; + +// Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec. + +function xtime(poly) { + poly <<= 1; + return ((poly & 0x100) ? (poly ^ 0x11B) : (poly)); +} + +// Multiplies the two elements of GF(2^8) together and returns the result. +// See the Rijndael spec, but should be straightforward: for each power of +// the indeterminant that has a 1 coefficient in x, add y times that power +// to the result. x and y should be bytes representing elements of GF(2^8) + +function mult_GF256(x, y) { + var bit, result = 0; + + for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) { + if (x & bit) + result ^= y; + } + return result; +} + +// Performs the substitution step of the cipher. State is the 2d array of +// state information (see spec) and direction is string indicating whether +// we are performing the forward substitution ("encrypt") or inverse +// substitution (anything else) + +function byteSub(state, direction) { + var S; + if (direction == "encrypt") // Point S to the SBox we're using + S = SBox; + else + S = SBoxInverse; + for (var i = 0; i < 4; i++) // Substitute for every byte in state + for (var j = 0; j < Nb; j++) + state[i][j] = S[state[i][j]]; +} + +// Performs the row shifting step of the cipher. + +function shiftRow(state, direction) { + for (var i=1; i<4; i++) // Row 0 never shifts + if (direction == "encrypt") + state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]); + else + state[i] = cyclicShiftLeft(state[i], Nb - shiftOffsets[Nb][i]); + +} + +// Performs the column mixing step of the cipher. Most of these steps can +// be combined into table lookups on 32bit values (at least for encryption) +// to greatly increase the speed. + +function mixColumn(state, direction) { + var b = []; // Result of matrix multiplications + for (var j = 0; j < Nb; j++) { // Go through each column... + for (var i = 0; i < 4; i++) { // and for each row in the column... + if (direction == "encrypt") + b[i] = mult_GF256(state[i][j], 2) ^ // perform mixing + mult_GF256(state[(i+1)%4][j], 3) ^ + state[(i+2)%4][j] ^ + state[(i+3)%4][j]; + else + b[i] = mult_GF256(state[i][j], 0xE) ^ + mult_GF256(state[(i+1)%4][j], 0xB) ^ + mult_GF256(state[(i+2)%4][j], 0xD) ^ + mult_GF256(state[(i+3)%4][j], 9); + } + for (var i = 0; i < 4; i++) // Place result back into column + state[i][j] = b[i]; + } +} + +// Adds the current round key to the state information. Straightforward. + +function addRoundKey(state, roundKey) { + for (var j = 0; j < Nb; j++) { // Step through columns... + state[0][j] ^= (roundKey[j] & 0xFF); // and XOR + state[1][j] ^= ((roundKey[j]>>8) & 0xFF); + state[2][j] ^= ((roundKey[j]>>16) & 0xFF); + state[3][j] ^= ((roundKey[j]>>24) & 0xFF); + } +} + +// This function creates the expanded key from the input (128/192/256-bit) +// key. The parameter key is an array of bytes holding the value of the key. +// The returned value is an array whose elements are the 32-bit words that +// make up the expanded key. + +function keyExpansion(key) { + var expandedKey = new Array(); + var temp; + + // in case the key size or parameters were changed... + Nk = keySizeInBits / 32; + Nb = blockSizeInBits / 32; + Nr = roundsArray[Nk][Nb]; + + for (var j=0; j < Nk; j++) // Fill in input key first + expandedKey[j] = + (key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24); + + // Now walk down the rest of the array filling in expanded key bytes as + // per Rijndael's spec + for (j = Nk; j < Nb * (Nr + 1); j++) { // For each word of expanded key + temp = expandedKey[j - 1]; + if (j % Nk == 0) + temp = ( (SBox[(temp>>8) & 0xFF]) | + (SBox[(temp>>16) & 0xFF]<<8) | + (SBox[(temp>>24) & 0xFF]<<16) | + (SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) - 1]; + else if (Nk > 6 && j % Nk == 4) + temp = (SBox[(temp>>24) & 0xFF]<<24) | + (SBox[(temp>>16) & 0xFF]<<16) | + (SBox[(temp>>8) & 0xFF]<<8) | + (SBox[temp & 0xFF]); + expandedKey[j] = expandedKey[j-Nk] ^ temp; + } + return expandedKey; +} + +// Rijndael's round functions... + +function Round(state, roundKey) { + byteSub(state, "encrypt"); + shiftRow(state, "encrypt"); + mixColumn(state, "encrypt"); + addRoundKey(state, roundKey); +} + +function InverseRound(state, roundKey) { + addRoundKey(state, roundKey); + mixColumn(state, "decrypt"); + shiftRow(state, "decrypt"); + byteSub(state, "decrypt"); +} + +function FinalRound(state, roundKey) { + byteSub(state, "encrypt"); + shiftRow(state, "encrypt"); + addRoundKey(state, roundKey); +} + +function InverseFinalRound(state, roundKey){ + addRoundKey(state, roundKey); + shiftRow(state, "decrypt"); + byteSub(state, "decrypt"); +} + +// encrypt is the basic encryption function. It takes parameters +// block, an array of bytes representing a plaintext block, and expandedKey, +// an array of words representing the expanded key previously returned by +// keyExpansion(). The ciphertext block is returned as an array of bytes. + +function encrypt(block, expandedKey) { + var i; + if (!block || block.length*8 != blockSizeInBits) + return; + if (!expandedKey) + return; + + block = packBytes(block); + addRoundKey(block, expandedKey); + for (i=1; i0; i--) + InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1))); + addRoundKey(block, expandedKey); + return unpackBytes(block); +} + +// This method takes a byte array (byteArray) and converts it to a string by +// applying String.fromCharCode() to each value and concatenating the result. +// The resulting string is returned. Note that this function SKIPS zero bytes +// under the assumption that they are padding added in formatPlaintext(). +// Obviously, do not invoke this method on raw data that can contain zero +// bytes. It is really only appropriate for printable ASCII/Latin-1 +// values. Roll your own function for more robust functionality :) + +function byteArrayToString(byteArray) { + var result = ""; + for(var i=0; i "10ff". The function returns a +// string. + +function byteArrayToHex(byteArray) { + var result = ""; + if (!byteArray) + return; + for (var i=0; i [16, 255]. This +// function returns an array. + +function hexToByteArray(hexString) { + /* + var byteArray = []; + if (hexString.length % 2) // must have even length + return; + if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0) + hexString = hexString.substring(2); + for (var i = 0; i 0 && i < bpb; i--) + plaintext[plaintext.length] = 0; + + return plaintext; +} + +// Returns an array containing "howMany" random bytes. YOU SHOULD CHANGE THIS +// TO RETURN HIGHER QUALITY RANDOM BYTES IF YOU ARE USING THIS FOR A "REAL" +// APPLICATION. + +function getRandomBytes(howMany) { + var i; + var bytes = new Array(); + for (i=0; i0; block--) { + aBlock = + decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey); + if (mode == "CBC") + for (var i=0; i nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. +*/ +var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */ +function safe_add (x, y) { + var lsw = (x & 0xFFFF) + (y & 0xFFFF); + var msw = (x >> 16) + (y >> 16) + (lsw >> 16); + return (msw << 16) | (lsw & 0xFFFF); +} +function S (X, n) {return ( X >>> n ) | (X << (32 - n));} +function R (X, n) {return ( X >>> n );} +function Ch(x, y, z) {return ((x & y) ^ ((~x) & z));} +function Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));} +function Sigma0256(x) {return (S(x, 2) ^ S(x, 13) ^ S(x, 22));} +function Sigma1256(x) {return (S(x, 6) ^ S(x, 11) ^ S(x, 25));} +function Gamma0256(x) {return (S(x, 7) ^ S(x, 18) ^ R(x, 3));} +function Gamma1256(x) {return (S(x, 17) ^ S(x, 19) ^ R(x, 10));} +function core_sha256 (m, l) { + var K = new Array(0x428A2F98,0x71374491,0xB5C0FBCF,0xE9B5DBA5,0x3956C25B,0x59F111F1,0x923F82A4,0xAB1C5ED5,0xD807AA98,0x12835B01,0x243185BE,0x550C7DC3,0x72BE5D74,0x80DEB1FE,0x9BDC06A7,0xC19BF174,0xE49B69C1,0xEFBE4786,0xFC19DC6,0x240CA1CC,0x2DE92C6F,0x4A7484AA,0x5CB0A9DC,0x76F988DA,0x983E5152,0xA831C66D,0xB00327C8,0xBF597FC7,0xC6E00BF3,0xD5A79147,0x6CA6351,0x14292967,0x27B70A85,0x2E1B2138,0x4D2C6DFC,0x53380D13,0x650A7354,0x766A0ABB,0x81C2C92E,0x92722C85,0xA2BFE8A1,0xA81A664B,0xC24B8B70,0xC76C51A3,0xD192E819,0xD6990624,0xF40E3585,0x106AA070,0x19A4C116,0x1E376C08,0x2748774C,0x34B0BCB5,0x391C0CB3,0x4ED8AA4A,0x5B9CCA4F,0x682E6FF3,0x748F82EE,0x78A5636F,0x84C87814,0x8CC70208,0x90BEFFFA,0xA4506CEB,0xBEF9A3F7,0xC67178F2); + var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); + var W = new Array(64); + var a, b, c, d, e, f, g, h, i, j; + var T1, T2; + /* append padding */ + m[l >> 5] |= 0x80 << (24 - l % 32); + m[((l + 64 >> 9) << 4) + 15] = l; + for ( var i = 0; i>5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i%32); + return bin; +} +function binb2hex (binarray) { + var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ + var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; + var str = ""; + for (var i = 0; i < binarray.length * 4; i++) { + str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8 )) & 0xF); + } + return str; +} +function hex_sha256(s){return binb2hex(core_sha256(str2binb(s),s.length * chrsz));} + +// Javascript implementation of the and SHA1 hash algorithms - both written by Paul Johnston, licensed under the BSD license + +// MD5 +var hexcase = 0; var b64pad = ""; var chrsz = 8; +function hex_md5(s){ return binl2hex(core_md5(str2binl(s), s.length * chrsz));} +function b64_md5(s){ return binl2b64(core_md5(str2binl(s), s.length * chrsz));} +function str_md5(s){ return binl2str(core_md5(str2binl(s), s.length * chrsz));} +function hex_hmac_md5(key, data) { return binl2hex(core_hmac_md5(key, data)); } +function b64_hmac_md5(key, data) { return binl2b64(core_hmac_md5(key, data)); } +function str_hmac_md5(key, data) { return binl2str(core_hmac_md5(key, data)); } +function md5_vm_test() { return hex_md5("abc") == "900150983cd24fb0d6963f7d28e17f72"; } +function core_md5(x, len) { x[len >> 5] |= 0x80 << ((len) % 32); x[(((len + 64) >>> 9) << 4) + 14] = len; var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; for(var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936);d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586);c = md5_ff(c, d, a, b, x[i+ 2], 17, 606105819);b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330); + a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897);d = md5_ff(d, a, b, c, x[i+ 5], 12, 1200080426);c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341);b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983);a = md5_ff(a, b, c, d, x[i+ 8], 7 , 1770035416);d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417);c = md5_ff(c, d, a, b, x[i+10], 17, -42063);b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162);a = md5_ff(a, b, c, d, x[i+12], 7 , 1804603682);d = md5_ff(d, a, b, c, x[i+13], 12, -40341101); + c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290);b = md5_ff(b, c, d, a, x[i+15], 22, 1236535329);a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510);d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632);c = md5_gg(c, d, a, b, x[i+11], 14, 643717713);b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302);a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691);d = md5_gg(d, a, b, c, x[i+10], 9 , 38016083);c = md5_gg(c, d, a, b, x[i+15], 14, -660478335);b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848); + a = md5_gg(a, b, c, d, x[i+ 9], 5 , 568446438);d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690);c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961);b = md5_gg(b, c, d, a, x[i+ 8], 20, 1163531501);a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467);d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784);c = md5_gg(c, d, a, b, x[i+ 7], 14, 1735328473);b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734);a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558);d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463); + c = md5_hh(c, d, a, b, x[i+11], 16, 1839030562);b = md5_hh(b, c, d, a, x[i+14], 23, -35309556);a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060);d = md5_hh(d, a, b, c, x[i+ 4], 11, 1272893353);c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632);b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640);a = md5_hh(a, b, c, d, x[i+13], 4 , 681279174);d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222);c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979);b = md5_hh(b, c, d, a, x[i+ 6], 23, 76029189); + a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487);d = md5_hh(d, a, b, c, x[i+12], 11, -421815835);c = md5_hh(c, d, a, b, x[i+15], 16, 530742520);b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651);a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844);d = md5_ii(d, a, b, c, x[i+ 7], 10, 1126891415);c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905);b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055);a = md5_ii(a, b, c, d, x[i+12], 6 , 1700485571);d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606); + c = md5_ii(c, d, a, b, x[i+10], 15, -1051523);b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799);a = md5_ii(a, b, c, d, x[i+ 8], 6 , 1873313359);d = md5_ii(d, a, b, c, x[i+15], 10, -30611744);c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380);b = md5_ii(b, c, d, a, x[i+13], 21, 1309151649);a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070);d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379);c = md5_ii(c, d, a, b, x[i+ 2], 15, 718787259);b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551); + a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); } return Array(a, b, c, d); } +function md5_cmn(q, a, b, x, s, t) { return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b); } +function md5_ff(a, b, c, d, x, s, t) { return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t); } +function md5_gg(a, b, c, d, x, s, t) { return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t); } +function md5_hh(a, b, c, d, x, s, t) { return md5_cmn(b ^ c ^ d, a, b, x, s, t); } +function md5_ii(a, b, c, d, x, s, t) { return md5_cmn(c ^ (b | (~d)), a, b, x, s, t); } +function core_hmac_md5(key, data) { var bkey = str2binl(key); if(bkey.length > 16) bkey = core_md5(bkey, key.length * chrsz); var ipad = Array(16), opad = Array(16); for(var i = 0; i < 16; i++) { ipad[i] = bkey[i] ^ 0x36363636; opad[i] = bkey[i] ^ 0x5C5C5C5C; } var hash = core_md5(ipad.concat(str2binl(data)), 512 + data.length * chrsz); return core_md5(opad.concat(hash), 512 + 128); } +function safe_add(x, y) {var lsw = (x & 0xFFFF) + (y & 0xFFFF);var msw = (x >> 16) + (y >> 16) + (lsw >> 16);return (msw << 16) | (lsw & 0xFFFF); } +function bit_rol(num, cnt) { return (num << cnt) | (num >>> (32 - cnt)); } +function str2binl(str) { var bin = Array(); var mask = (1 << chrsz) - 1; for(var i = 0; i < str.length * chrsz; i += chrsz)bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (i%32); return bin;} +function binl2str(bin) { var str = ""; var mask = (1 << chrsz) - 1; for(var i = 0; i < bin.length * 32; i += chrsz) str += String.fromCharCode((bin[i>>5] >>> (i % 32)) & mask); return str; } +function binl2hex(binarray) { var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; var str = ""; for(var i = 0; i < binarray.length * 4; i++) { str += hex_tab.charAt((binarray[i>>2] >> ((i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((i%4)*8 )) & 0xF); } return str; } +function binl2b64(binarray) { var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var str = ""; for(var i = 0; i < binarray.length * 4; i += 3) { var triplet = (((binarray[i >> 2] >> 8 * ( i %4)) & 0xFF) << 16) | (((binarray[i+1 >> 2] >> 8 * ((i+1)%4)) & 0xFF) << 8 ) | ((binarray[i+2 >> 2] >> 8 * ((i+2)%4)) & 0xFF); for(var j = 0; j < 4; j++) { if(i * 8 + j * 6 > binarray.length * 32) str += b64pad; else str += tab.charAt((triplet >> 6*(3-j)) & 0x3F); } } return str; } + +// SHA1 +function hex_sha1(s){return binb2hex(core_sha1(str2binb(s),s.length * chrsz));} +function b64_sha1(s){return binb2b64(core_sha1(str2binb(s),s.length * chrsz));} +function str_sha1(s){return binb2str(core_sha1(str2binb(s),s.length * chrsz));} +function hex_hmac_sha1(key, data){ return binb2hex(core_hmac_sha1(key, data));} +function b64_hmac_sha1(key, data){ return binb2b64(core_hmac_sha1(key, data));} +function str_hmac_sha1(key, data){ return binb2str(core_hmac_sha1(key, data));} +function sha1_vm_test() { return hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d"; } +function core_sha1(x, len) { x[len >> 5] |= 0x80 << (24 - len % 32); x[((len + 64 >> 9) << 4) + 15] = len; var w = Array(80); var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; var e = -1009589776; for(var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; var olde = e; for(var j = 0; j < 80; j++) { if(j < 16) w[j] = x[i + j]; else w[j] = rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1); var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)), safe_add(safe_add(e, w[j]), sha1_kt(j))); e = d; d = c; c = rol(b, 30); b = a; a = t; } a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); e = safe_add(e, olde); } return Array(a, b, c, d, e);} +function sha1_ft(t, b, c, d){ if(t < 20) return (b & c) | ((~b) & d); if(t < 40) return b ^ c ^ d; if(t < 60) return (b & c) | (b & d) | (c & d); return b ^ c ^ d;} +function sha1_kt(t){ return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : (t < 60) ? -1894007588 : -899497514;} +function core_hmac_sha1(key, data){ var bkey = str2binb(key); if(bkey.length > 16) bkey = core_sha1(bkey, key.length * chrsz); var ipad = Array(16), opad = Array(16); for(var i = 0; i < 16; i++) { ipad[i] = bkey[i] ^ 0x36363636; opad[i] = bkey[i] ^ 0x5C5C5C5C; } var hash = core_sha1(ipad.concat(str2binb(data)), 512 + data.length * chrsz); return core_sha1(opad.concat(hash), 512 + 160);} +function safe_add(x, y){ var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF);} +function rol(num, cnt){ return (num << cnt) | (num >>> (32 - cnt));} +function str2binb(str){ var bin = Array(); var mask = (1 << chrsz) - 1; for(var i = 0; i < str.length * chrsz; i += chrsz) bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (32 - chrsz - i%32); return bin;} +function binb2str(bin){ var str = ""; var mask = (1 << chrsz) - 1; for(var i = 0; i < bin.length * 32; i += chrsz) str += String.fromCharCode((bin[i>>5] >>> (32 - chrsz - i%32)) & mask); return str;} +function binb2hex(binarray){ var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; var str = ""; for(var i = 0; i < binarray.length * 4; i++) { str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8 )) & 0xF); } return str;} +function binb2b64(binarray){ var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var str = ""; for(var i = 0; i < binarray.length * 4; i += 3) { var triplet = (((binarray[i >> 2] >> 8 * (3 - i %4)) & 0xFF) << 16) | (((binarray[i+1 >> 2] >> 8 * (3 - (i+1)%4)) & 0xFF) << 8 ) | ((binarray[i+2 >> 2] >> 8 * (3 - (i+2)%4)) & 0xFF); for(var j = 0; j < 4; j++) { if(i * 8 + j * 6 > binarray.length * 32) str += b64pad; else str += tab.charAt((triplet >> 6*(3-j)) & 0x3F); } } return str;} +